Question
Mathematics Question on Matrices
Let ω be a complex cube root of unity with ω=0 and P=[Pii] be an n×n matrix with pij=ωi+j Then, P2=0 when n =
A
57
B
55
C
58
D
56
Answer
56
Explanation
Solution
Here, P=P−[Pij]1×1 with Pij=wi+j
∴ When n = 1
P−[Pij]n×n=[ω2] ⇒ P2=[ω2]=0
∴ whenn=2
P=P−[Pij]2×2=[p11 p21p12p22]=[ω2 ω3ω3ω4]=[ω2 11ω]
p2=[ω2 11ω][ω2 11ω]⇒
p2[ω4+1 ω2+ωω2+ω1+ω2]=0
When n = 3
p=[pij]3×3= ω2 ω3 ω4ω3ω4ω5ω4ω5ω6=ω2 1 ω1ωω2ωω21
p2=ω2 1 ω1ωω2ωω21ω2 1 ω1ωω2ωω21=0 0 000 0000=0
∴ p2=0, when n is a multiple of 3.
p2=0, when n is not a multiple of 3.
⇒ n=57 is not possible
∴ n = 55,58,56 is possible.