Solveeit Logo

Question

Mathematics Question on Matrices

Let ω\omega be a complex cube root of unity with ω0\omega \ne 0 and P=[Pii]P = [P_{ii}] be an n×nn \times \, n matrix with pij=ωi+jp_{ij} = \omega^{i+j} Then, P20P^2 \ne 0 when nn =

A

57

B

55

C

58

D

56

Answer

56

Explanation

Solution

Here, P=P[Pij]1×1 with Pij=wi+jP-[P_{ij}]_{1 \times 1}\ with \ P_{ij}=w^{i+j}
 \therefore \ When n = 1
P[Pij]n×n=[ω2]   P2=[ω2]0P-[P_{ij}]_{n \times n}=[\omega^2] \ \Rightarrow \ \ P^2=[\omega^2]\ne 0
    whenn=2\therefore \ \ \ \ when n=2
P=P[Pij]2×2=[p11p12 p21p22]=[ω2ω3 ω3ω4]=[ω21 1ω]P-[P_{ij}]_{2 \times 2} =\begin {bmatrix} p_{11} & p_{12} \\\ p_{21} & p_{22} \end {bmatrix}= \begin {bmatrix} \omega_{2} & \omega_{3} \\\ \omega_{3} & \omega_{4} \end {bmatrix} =\begin {bmatrix} \omega_{2} & 1 \\\ 1 & \omega \end {bmatrix}
p2=[ω21 1ω][ω21 1ω] p^2=\begin {bmatrix} \omega_{2} & 1 \\\ 1 & \omega \end {bmatrix} \begin {bmatrix} \omega_{2} & 1 \\\ 1 & \omega \end {bmatrix} \Rightarrow \
p2[ω4+1ω2+ω ω2+ω1+ω2]0p^2 \begin {bmatrix} \omega_{4}+1 & \omega_{2}+\omega \\\ \omega_{2}+\omega & 1+\omega_{2} \end {bmatrix} \ne 0
When n = 3
p=[pij]3×3=p=[p_{ij}]_{3 \times 3}= [ω2ω3ω4 ω3ω4ω5 ω4ω5ω6]=[ω21ω 1ωω2 ωω21] \begin {bmatrix} \omega^2 & \omega^3 & \omega^4 \\\ \omega^3 & \omega^4 & \omega^5 \\\ \omega^4 & \omega^5 & \omega^6 \end {bmatrix} = \begin {bmatrix} \omega^2 & 1 & \omega \\\ 1 & \omega & \omega^2 \\\ \omega & \omega^2 & 1 \end {bmatrix}
p2=[ω21ω 1ωω2 ωω21][ω21ω 1ωω2 ωω21]=[000 00 0 000]=0p^2= \begin {bmatrix} \omega^2 & 1 & \omega \\\ 1 & \omega & \omega^2 \\\ \omega & \omega^2 & 1 \end {bmatrix} \begin {bmatrix} \omega^2 & 1 & \omega \\\ 1 & \omega & \omega^2 \\\ \omega & \omega^2 & 1 \end {bmatrix} = \begin {bmatrix} 0 & 0 & 0\\\ 0 & 0 \ & 0\\\ 0 & 0 & 0 & \end {bmatrix} = 0
    p2=0,\therefore \ \ \ \ p^2=0, when n is a multiple of 3.
       p20\ \ \ \ \ \ \ p^2 \ne 0, when n is not a multiple of 3.
    n=57\Rightarrow \ \ \ \ n=57 is not possible
    \therefore \ \ \ \ n = 55,58,56 is possible.