Solveeit Logo

Question

Physics Question on Rotational Motion

Let ω1, ω2 and ω3 be the angular speed of the second hand, minute hand and hour hand of a smoothly running analog clock, respectively. If x1, x2 and x3 are their respective angular distances in 1 minute then the factor which remains constant (k) is

A

ω1x1\frac{\omega_1}{x_1} = ω2x2=ω3x3=k\frac{\omega_2}{x_2} = \frac{\omega_3}{x_3} = k

B

ω1x1=ω2x2=ω3x3=k\omega_1 x_1 = \omega_2 x_2 = \omega_3 x_3 = k

C

ω1x12=ω2x22=ω3x32=k\omega_1 x_1^2 = \omega_2 x_2^2 = \omega_3 x_3^2 = k

D

ω1x12=ω2x22=ω3x32=k\omega_1 x_1^2 = \omega_2 x_2^2 = \omega_3 x_3^2 = k

Answer

ω1x1\frac{\omega_1}{x_1} = ω2x2=ω3x3=k\frac{\omega_2}{x_2} = \frac{\omega_3}{x_3} = k

Explanation

Solution

Angular speed (ω\omega) = Angular displacementtime\frac{\text{Angular displacement}}{\text{time}}

For the second hand: ω1=2π60\omega_1 = \frac{2\pi}{60} rad/s x1 = ω1 × 60 = 2π rad

For the minute hand: ω2=2π3600\omega_2 = \frac{2\pi}{3600} rad/s x2 = ω2 × 60 = 2π60\frac{2\pi}{60} rad

For the hour hand:

ω3=2π3600×12\omega_3 = \frac{2\pi}{3600 \times 12} rad/s

x3 = ω3 × 60 = 2π720\frac{2\pi}{720} rad

Thus, ω1x1=ω2x2=ω3x3=160=k\frac{\omega_1}{x_1} = \frac{\omega_2}{x_2} = \frac{\omega_3}{x_3} = \frac{1}{60} = k