Solveeit Logo

Question

Mathematics Question on Conic sections

Let OO be the vertex and QQ be any point on the parabola, x2x^2 = 8y. If the point PP divides the line segment OQOQ internally in the ratio 1:31 : 3, then the locus of PP is

A

x2=yx^{2}=y

B

y2=xy^{2}=x

C

y2=2xy^{2}=2x

D

x2=2yx^{2}=2y

Answer

x2=2yx^{2}=2y

Explanation

Solution

Let P:(h,k)P:(h, k)
h=1.α+β.04h=\frac{1 . \alpha+\beta .0}{4}
α=4h\Rightarrow \alpha=4 h
k=1.β+3.04k=\frac{1 . \beta+3.0}{4}
β=4k\Rightarrow \beta=4 k
(α,β)\because(\alpha, \beta) on Parabola
α2=8β\Rightarrow \alpha^{2}=8 \beta
(4h2)=8.4k\Rightarrow\left(4 h^{2}\right)=8.4 k
16h2=32k16 h^{2}=32 k
x2=2yx^{2}=2 y