Solveeit Logo

Question

Mathematics Question on Vector Algebra

Let O be the origin and the position vector of A and B be 2i^+2j^+k^2\hat{i}+2\hat{j}+\hat{k} and 2i^+4j^+4k^2\hat{i}+4\hat{j}+4\hat{k} respectively. If the internal bisector ofAOB\angle AOB meets the line AB at C, then the length of OC is

A

2331\frac{2}{3}\sqrt31

B

2334\frac{2}{3}\sqrt34

C

3434\frac{3}{4}\sqrt34

D

3231\frac{3}{2}\sqrt31

Answer

2334\frac{2}{3}\sqrt34

Explanation

Solution

Step 1: Find the Coordinates of Points A and B

A = (2, 2, 1) and B = (2, 4, 4)

Step 2: Use the Internal Division Formula

The internal bisector of ∠AOB divides AB in the ratio OA : OB = 1 : 2. Using the section formula, the coordinates of C are:

C=1B+2A1+2=1(2,4,4)+2(2,2,1)3=(2,83,2)C = \frac{1 \cdot B + 2 \cdot A}{1 + 2} = \frac{1 \cdot (2, 4, 4) + 2 \cdot (2, 2, 1)}{3} = \left(2, \frac{8}{3}, 2\right)

Step 3: Calculate the Length of OC

The vector OC has coordinates (2, 83\frac{8}{3}, 2). Using the distance formula:

OC=22+(83)2+22=4+649+4=1369=2343|OC| = \sqrt{2^2 + \left(\frac{8}{3}\right)^2 + 2^2} = \sqrt{4 + \frac{64}{9} + 4} = \sqrt{\frac{136}{9}} = \frac{2\sqrt{34}}{3}

So, the correct answer is: 2334\frac{2}{3}\sqrt{34}