Solveeit Logo

Question

Mathematics Question on Vectors

Let OO be the origin and OA=2i^+2j^+k^,OB=i^2j^+2k^\overrightarrow{ OA }=2 \hat{ i }+2 \hat{ j }+\hat{ k }, \overrightarrow{ OB }=\hat{ i }-2 \hat{ j }+2 \hat{ k } and OC=12(OBλOA)\overrightarrow{ OC }=\frac{1}{2}(\overrightarrow{ OB }-\lambda \overrightarrow{ OA }) for some \lambda \(> 0). If OB×OC=92|\overrightarrow{ OB } \times \overrightarrow{ OC }|=\frac{9}{2}, then which of the following statements is(are) TRUE?

A

Projection of OC\overrightarrow{ OC } on OA\overrightarrow{ OA } is 32-\frac{3}{2}

B

Area of the triangle OABOAB is 92\frac{9}{2}

C

Area of the triangle ABCABC is 92\frac{9}{2}

D

The acute angle between the diagonals of the parallelogram with adjacent sides OA\overrightarrow{ OA } and OC\overrightarrow{ OC } is π3\frac{\pi}{3}

Answer

Projection of OC\overrightarrow{ OC } on OA\overrightarrow{ OA } is 32-\frac{3}{2}

Explanation

Solution

(A) Projection of OC\overrightarrow{ OC } on OA\overrightarrow{ OA } is 32-\frac{3}{2}
(B) Area of the triangle OABOAB is 92\frac{9}{2}
(C) Area of the triangle ABCABC is 92\frac{9}{2}