Solveeit Logo

Question

Mathematics Question on Vector Algebra

Let OO be the origin and let PQRP Q R be an arbitrary triangle. The point SS is such that OPOQ+OROS=OROP+OQOS=OQOR+OPOS\overrightarrow{O P} \cdot \overrightarrow{O Q}+\overrightarrow{O R} \cdot \overrightarrow{O S}=\overrightarrow{O R} \cdot \overrightarrow{O P}+\overrightarrow{O Q} \cdot \overrightarrow{O S}=\overrightarrow{O Q} \cdot \overrightarrow{O R}+\overrightarrow{O P} \cdot \overrightarrow{O S} Then the triangle PQRP Q R has SS as its

A

centroid

B

circumcentre

C

incentre

D

orthocenter

Answer

orthocenter

Explanation

Solution

OPOQ+OROS=OROP+OQOS\overrightarrow{ OP } \cdot \overrightarrow{ OQ }+\overrightarrow{ OR } \cdot \overrightarrow{ OS }=\overrightarrow{ OR } \cdot \overrightarrow{ OP }+\overrightarrow{ OQ } \cdot \overrightarrow{ OS }
OP(OQOR)=OS(OQOR)\Rightarrow \overrightarrow{ OP } \cdot(\overrightarrow{ OQ }-\overrightarrow{ OR })=\overrightarrow{ OS } \cdot(\overrightarrow{ OQ }-\overrightarrow{ OR })
(OPOS)(RQ)=0\Rightarrow(\overrightarrow{ OP }-\overrightarrow{ OS }) \cdot(\overrightarrow{ RQ })=0
(SP)(RQ)=0(\overrightarrow{ SP }) \cdot(\overrightarrow{ RQ })=0
SPRQ\Rightarrow \overrightarrow{ SP } \perp \overline{ RQ }
Similarly SRQP\overrightarrow{ SR } \perp \overrightarrow{ QP } and SQPR\overrightarrow{ SQ } \perp \overrightarrow{ PR }
Hence, SS is orthocentre