Solveeit Logo

Question

Question: Let 'O' be origin and P be a variable point on the conic $y = \sqrt{5x^2 + 7x}$ and if Q is the foot...

Let 'O' be origin and P be a variable point on the conic y=5x2+7xy = \sqrt{5x^2 + 7x} and if Q is the foot of perpendicular from P on x-axis then the value of LtOQ0(area of (OPQ))ΔLt_{OQ \to 0} \frac{(area \text{ } of \text{ } (\triangle OPQ))}{\Delta} (where Δ\Delta is the area bounded by the conic and x-axis and ordinate through P) is equal to k, then the value of 4k-2=

Answer

1

Explanation

Solution

To find the value of 4k24k-2, we first need to determine the value of kk.

Given:

  1. O is the origin (0,0).
  2. P is a variable point (x,y)(x,y) on the conic y=5x2+7xy = \sqrt{5x^2 + 7x}.
  3. Q is the foot of the perpendicular from P on the x-axis, so Q has coordinates (x,0)(x,0).
  4. k=LtOQ0(area of (OPQ))Δk = Lt_{OQ \to 0} \frac{(area \text{ } of \text{ } (\triangle OPQ))}{\Delta}.
  5. Δ\Delta is the area bounded by the conic, the x-axis, and the ordinate through P.

Step 1: Determine the domain of the conic. For y=5x2+7xy = \sqrt{5x^2 + 7x} to be real, 5x2+7x05x^2 + 7x \ge 0. Factoring, x(5x+7)0x(5x+7) \ge 0. This inequality holds when x0x \ge 0 or x7/5x \le -7/5. The limit is OQ0OQ \to 0. Since OQ=xOQ = |x|, this means x0|x| \to 0, which implies x0x \to 0. For x0x \to 0, we must consider x>0x > 0 because if x<0x < 0, then xx must be less than or equal to 7/5-7/5, which does not approach 0. So, we consider x0+x \to 0^+. In this case, x>0x > 0 and y>0y > 0.

Step 2: Calculate the area of OPQ\triangle OPQ. The base of OPQ\triangle OPQ is OQ, which lies on the x-axis. Its length is OQ=xOQ = x. The height of OPQ\triangle OPQ is PQ, which is perpendicular to the x-axis. Its length is PQ=yPQ = y. Area of OPQ=12×base×height=12xy\triangle OPQ = \frac{1}{2} \times \text{base} \times \text{height} = \frac{1}{2} x y. Substitute y=5x2+7xy = \sqrt{5x^2 + 7x}: Area of OPQ=12x5x2+7x\triangle OPQ = \frac{1}{2} x \sqrt{5x^2 + 7x}.

Step 3: Calculate Δ\Delta. Δ\Delta is the area bounded by the conic y=5x2+7xy = \sqrt{5x^2 + 7x}, the x-axis, and the ordinate through P (which is xx). Since the conic passes through the origin (y=0y=0 when x=0x=0), the area is given by the definite integral from 00 to xx: Δ=0x5t2+7t dt\Delta = \int_{0}^{x} \sqrt{5t^2 + 7t} \text{ } dt.

Step 4: Evaluate the limit kk. The expression for kk is: k=Ltx0+12x5x2+7x0x5t2+7t dtk = Lt_{x \to 0^+} \frac{\frac{1}{2} x \sqrt{5x^2 + 7x}}{\int_{0}^{x} \sqrt{5t^2 + 7t} \text{ } dt}. As x0+x \to 0^+, the numerator approaches 12(0)0=0\frac{1}{2} (0) \sqrt{0} = 0. The denominator approaches 005t2+7t dt=0\int_{0}^{0} \sqrt{5t^2 + 7t} \text{ } dt = 0. Since the limit is of the form 00\frac{0}{0}, we can apply L'Hopital's Rule. Let f(x)=12x5x2+7xf(x) = \frac{1}{2} x \sqrt{5x^2 + 7x} and g(x)=0x5t2+7t dtg(x) = \int_{0}^{x} \sqrt{5t^2 + 7t} \text{ } dt. We need to find f(x)f'(x) and g(x)g'(x). By the Fundamental Theorem of Calculus, g(x)=5x2+7xg'(x) = \sqrt{5x^2 + 7x}.

Now, calculate f(x)f'(x) using the product rule: f(x)=ddx(12x5x2+7x)f'(x) = \frac{d}{dx} \left( \frac{1}{2} x \sqrt{5x^2 + 7x} \right) f(x)=12[(1)5x2+7x+xddx(5x2+7x)]f'(x) = \frac{1}{2} \left[ (1) \cdot \sqrt{5x^2 + 7x} + x \cdot \frac{d}{dx}(\sqrt{5x^2 + 7x}) \right] f(x)=12[5x2+7x+x125x2+7x(10x+7)]f'(x) = \frac{1}{2} \left[ \sqrt{5x^2 + 7x} + x \cdot \frac{1}{2\sqrt{5x^2 + 7x}} \cdot (10x + 7) \right] To simplify, find a common denominator: f(x)=12[2(5x2+7x)+x(10x+7)25x2+7x]f'(x) = \frac{1}{2} \left[ \frac{2(5x^2 + 7x) + x(10x + 7)}{2\sqrt{5x^2 + 7x}} \right] f(x)=1410x2+14x+10x2+7x5x2+7xf'(x) = \frac{1}{4} \frac{10x^2 + 14x + 10x^2 + 7x}{\sqrt{5x^2 + 7x}} f(x)=1420x2+21x5x2+7xf'(x) = \frac{1}{4} \frac{20x^2 + 21x}{\sqrt{5x^2 + 7x}}.

Now, apply L'Hopital's Rule: k=Ltx0+f(x)g(x)=Ltx0+1420x2+21x5x2+7x5x2+7xk = Lt_{x \to 0^+} \frac{f'(x)}{g'(x)} = Lt_{x \to 0^+} \frac{\frac{1}{4} \frac{20x^2 + 21x}{\sqrt{5x^2 + 7x}}}{\sqrt{5x^2 + 7x}} k=Ltx0+1420x2+21x5x2+7xk = Lt_{x \to 0^+} \frac{1}{4} \frac{20x^2 + 21x}{5x^2 + 7x} Factor out xx from the numerator and denominator: k=Ltx0+14x(20x+21)x(5x+7)k = Lt_{x \to 0^+} \frac{1}{4} \frac{x(20x + 21)}{x(5x + 7)} Since x0+x \to 0^+, x0x \ne 0, so we can cancel xx: k=Ltx0+1420x+215x+7k = Lt_{x \to 0^+} \frac{1}{4} \frac{20x + 21}{5x + 7} Now, substitute x=0x=0: k=1420(0)+215(0)+7=14217=143=34k = \frac{1}{4} \frac{20(0) + 21}{5(0) + 7} = \frac{1}{4} \frac{21}{7} = \frac{1}{4} \cdot 3 = \frac{3}{4}.

Step 5: Calculate the value of 4k24k-2. 4k2=4(34)2=32=14k - 2 = 4 \left( \frac{3}{4} \right) - 2 = 3 - 2 = 1.

The final answer is 1\boxed{1}.

Explanation of the solution:

  1. Identify coordinates: O(0,0), P(x,y), Q(x,0).
  2. Area of OPQ=12×OQ×PQ=12xy\triangle OPQ = \frac{1}{2} \times OQ \times PQ = \frac{1}{2} x y.
  3. Area Δ=0xy dt\Delta = \int_0^x y \text{ } dt.
  4. Substitute y=5x2+7xy = \sqrt{5x^2+7x} into both expressions.
  5. The limit OQ0OQ \to 0 means x0+x \to 0^+.
  6. The limit k=Ltx0+12x5x2+7x0x5t2+7tdtk = Lt_{x \to 0^+} \frac{\frac{1}{2} x \sqrt{5x^2+7x}}{\int_0^x \sqrt{5t^2+7t} dt} is of 00\frac{0}{0} form.
  7. Apply L'Hopital's Rule: k=Ltx0+ddx(12x5x2+7x)ddx(0x5t2+7tdt)k = Lt_{x \to 0^+} \frac{\frac{d}{dx}(\frac{1}{2} x \sqrt{5x^2+7x})}{\frac{d}{dx}(\int_0^x \sqrt{5t^2+7t} dt)}.
  8. Calculate derivatives: Numerator derivative: 1420x2+21x5x2+7x\frac{1}{4} \frac{20x^2+21x}{\sqrt{5x^2+7x}}. Denominator derivative (by FTC): 5x2+7x\sqrt{5x^2+7x}.
  9. Substitute derivatives into the limit expression: k=Ltx0+1420x2+21x5x2+7x5x2+7x=Ltx0+1420x2+21x5x2+7xk = Lt_{x \to 0^+} \frac{\frac{1}{4} \frac{20x^2+21x}{\sqrt{5x^2+7x}}}{\sqrt{5x^2+7x}} = Lt_{x \to 0^+} \frac{1}{4} \frac{20x^2+21x}{5x^2+7x}.
  10. Simplify the expression by factoring out xx: k=Ltx0+14x(20x+21)x(5x+7)=Ltx0+1420x+215x+7k = Lt_{x \to 0^+} \frac{1}{4} \frac{x(20x+21)}{x(5x+7)} = Lt_{x \to 0^+} \frac{1}{4} \frac{20x+21}{5x+7}.
  11. Evaluate the limit by substituting x=0x=0: k=14217=34k = \frac{1}{4} \frac{21}{7} = \frac{3}{4}.
  12. Calculate 4k2=4(34)2=32=14k-2 = 4(\frac{3}{4}) - 2 = 3 - 2 = 1.