Solveeit Logo

Question

Mathematics Question on Matrices

Let n2n\ge2 be an integer, A=(cos(2π/n)sin(2π/n)0 sin(2π/n)cos(2π/n)0 001)A=\begin{pmatrix}\cos\left(2\pi/ n\right)&\sin \left(2\pi / n\right)&0\\\ -\sin\left(2\pi / n\right)&\cos\left(2\pi / n\right)&0\\\ 0&0&1\end{pmatrix} and ?? is the identity matrix of order 33. Then

A

An=IA^{n}=I and An1IA^{n-1} \ne I

B

AmIA^{m} \ne I for any positive integer mm

C

AA is not invertible

D

Am=0A^m = 0 for a positive integer mm

Answer

An=IA^{n}=I and An1IA^{n-1} \ne I

Explanation

Solution

A=[cos(2πn)sin(2πn)0 sin(2πn)cos(2πn)0 001]A=\begin{bmatrix}\cos \left(\frac{2 \pi}{n}\right) & \sin \left(\frac{2 \pi}{n}\right) & 0 \\\ -\sin \left(\frac{2 \pi}{n}\right) & \cos \left(\frac{2 \pi}{n}\right) & 0 \\\ 0 & 0 & 1\end{bmatrix}