Solveeit Logo

Question

Question: Let \[n \ge 2\] be an integer \[A = \left[ {\begin{array}{*{20}{c}}{\cos \left( {\dfrac{{2\pi }}{n...

Let n2n \ge 2 be an integer
A = \left[ {\begin{array}{*{20}{c}}{\cos \left( {\dfrac{{2\pi }}{n}} \right)}&{\sin \left( {\dfrac{{2\pi }}{n}} \right)}&0\\\\{\sin \left( {\dfrac{{2\pi }}{n}} \right)}&{\cos \left( {\dfrac{{2\pi }}{n}} \right)}&0\\\0&0&1\end{array}} \right] and II is the identity matrix of order 3, then following of which is correct
A.An=I{A^n} = I and An1I{A^{n - 1}} \ne I
B.AmI{A^m} \ne I for any positive integer mm
C.AA is not invertible
D.An=0{A^n} = 0 for a positive integer mm

Explanation

Solution

Here we will first find the square of the given matrix and then we will find its cube. Then we will see that it is forming a certain pattern. We will follow the same pattern to find the matrix raised to given power. We will simplify the matrix using trigonometric identities and find the correct answer.

Complete step-by-step answer:
The given matrix is A = \left[ {\begin{array}{*{20}{c}}{\cos \left( {\dfrac{{2\pi }}{n}} \right)}&{\sin \left( {\dfrac{{2\pi }}{n}} \right)}&0\\\\{\sin \left( {\dfrac{{2\pi }}{n}} \right)}&{\cos \left( {\dfrac{{2\pi }}{n}} \right)}&0\\\0&0&1\end{array}} \right].
Let 2πn=x\dfrac{{2\pi }}{n} = x and we will substitute this value here.
A = \left[ {\begin{array}{*{20}{c}}{\cos x}&{\sin x}&0\\\\{ - \sin x}&{\cos x}&0\\\0&0&1\end{array}} \right]
Now, we will find the product of matrices A×AA \times A.
We can write A×AA \times A as A2{A^2}.
A \times A = {A^2} = \left[ {\begin{array}{*{20}{c}}{\cos x}&{\sin x}&0\\\\{ - \sin x}&{\cos x}&0\\\0&0&1\end{array}} \right] \times \left[ {\begin{array}{*{20}{c}}{\cos x}&{\sin x}&0\\\\{ - \sin x}&{\cos x}&0\\\0&0&1\end{array}} \right]
Now, we will multiply these matrices using the rule of multiplication of matrices. Therefore, we get
\Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}{\cos x \times \cos x + \sin x \times \left( { - \sin x} \right)}&{\cos x \times \sin x + \sin x \times \cos x}&0\\\\{\left( { - \sin x} \right) \times \cos x + \cos x \times \left( { - \sin x} \right)}&{\left( { - \sin x} \right) \times \sin x + \cos x \times \cos x}&0\\\0&0&1\end{array}} \right]
On further simplifying the terms, we get
\Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}{{{\cos }^2}x - {{\sin }^2}x}&{2 \cdot \cos x \cdot \sin x}&0\\\\{ - 2 \cdot \cos x \cdot \sin x}&{{{\cos }^2}x - {{\sin }^2}x}&0\\\0&0&1\end{array}} \right]
Now using the trigonometric identities 2sinxcosx=sin2x2\sin x\cos x = \sin 2xand cos2xsin2x=cos2x{\cos ^2}x - {\sin ^2}x = \cos 2x in the above matrix, we get.
\Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}{\cos 2x}&{\sin 2x}&0\\\\{ - \sin 2x}&{\cos 2x}&0\\\0&0&1\end{array}} \right]
Similarly, we will find the product of matrices A2×A{A^2} \times A .
We can write A2×A{A^2} \times A as A3{A^3}.
{A^2} \times A = {A^3} = \left[ {\begin{array}{*{20}{c}}{\cos 2x}&{\sin 2x}&0\\\\{ - \sin 2x}&{\cos 2x}&0\\\0&0&1\end{array}} \right] \times \left[ {\begin{array}{*{20}{c}}{\cos x}&{\sin x}&0\\\\{ - \sin x}&{\cos x}&0\\\0&0&1\end{array}} \right]
Now, we will multiply these matrices using the rule of multiplication of matrices.
\Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}{\cos 2x \times \cos x + \sin 2x \times \left( { - \sin x} \right)}&{\cos 2x \times \sin x + \sin 2x \times \cos x}&0\\\\{\left( { - \sin 2x} \right) \times \cos x + \cos 2x \times \left( { - \sin x} \right)}&{\left( { - \sin 2x} \right) \times \sin x + \cos 2x \times \cos x}&0\\\0&0&1\end{array}} \right]

Now using the trigonometric identities sinAcosB+cosAsinB=sin(A+B)\sin A\cos B + \cos A\sin B = \sin \left( {A + B} \right) and cosAcosBsinAsinB=cos(A+B)\cos A\cos B - \sin A\sin B = \cos \left( {A + B} \right) in the above matrix, we get
\Rightarrow {A^3} = \left[ {\begin{array}{*{20}{c}}{\cos 3x}&{\sin 3x}&0\\\\{ - \sin 3x}&{\cos 3x}&0\\\0&0&1\end{array}} \right]
We can see that it is following a certain pattern as shown below:
{A^n} = \left[ {\begin{array}{*{20}{c}}{\cos nx}&{\sin nx}&0\\\\{ - \sin nx}&{\cos nx}&0\\\0&0&1\end{array}} \right]
Now, we will substitute the value 2πn=x\dfrac{{2\pi }}{n} = x in the above matrix. Therefore, we get
\Rightarrow {A^n} = \left[ {\begin{array}{*{20}{c}}{\cos n \cdot \dfrac{{2\pi }}{n}}&{\sin n \cdot \dfrac{{2\pi }}{n}}&0\\\\{ - \sin n \cdot \dfrac{{2\pi }}{n}}&{\cos n \cdot \dfrac{{2\pi }}{n}}&0\\\0&0&1\end{array}} \right]
On further multiplying the terms, we get
\Rightarrow {A^n} = \left[ {\begin{array}{*{20}{c}}{\cos 2\pi }&{\sin 2\pi }&0\\\\{ - \sin 2\pi }&{\cos 2\pi }&0\\\0&0&1\end{array}} \right]

Now, substituting sin2π=0\sin 2\pi = 0 and cos2π=1\cos 2\pi = 1 in the above matrix, we get
\Rightarrow {A^n} = \left[ {\begin{array}{*{20}{c}}1&0&0\\\0&1&0\\\0&0&1\end{array}} \right]
We know that I = \left[ {\begin{array}{*{20}{c}}1&0&0\\\0&1&0\\\0&0&1\end{array}} \right]
Therefore, we have
\begin{array}{l} \Rightarrow {A^n} = \left[ {\begin{array}{*{20}{c}}1&0&0\\\0&1&0\\\0&0&1\end{array}} \right] = I\\\ \Rightarrow {A^n} = I\end{array}
Also, An1I{A^{n - 1}} \ne I
Hence, the correct option is option A.

Note: To solve this question, we need to know the meaning or definition of the trigonometric identities. Trigonometric identities are defined as the equalities which involve the trigonometric functions. They are always true for every value of the occurring variables for which both sides of the equality are defined. We need to remember that all the trigonometric identities are periodic in nature. They repeat their values after a certain interval. These intervals are a multiple of 2π2\pi .