Solveeit Logo

Question

Question: Let \(n\ge 2\) be a natural number and \(0<\theta <\dfrac{\pi }{2}\). Then find the value of indefin...

Let n2n\ge 2 be a natural number and 0<θ<π20<\theta <\dfrac{\pi }{2}. Then find the value of indefinite integral (sinnθsinθ)1ncosθsinn+1θdθ\int{\dfrac{{{\left( {{\sin }^{n}}\theta -\sin \theta \right)}^{\dfrac{1}{n}}}\cos \theta }{{{\sin }^{n+1}}\theta }}d\theta ? (Where C is constant of integration).
(a) nn21(11sinn+1θ)n+1n+C\dfrac{n}{{{n}^{2}}-1}{{\left( 1-\dfrac{1}{{{\sin }^{n+1}}\theta } \right)}^{\dfrac{n+1}{n}}}+C,
(b) 1n2+1(11sinn+1θ)n+1n+C\dfrac{1}{{{n}^{2}}+1}{{\left( 1-\dfrac{1}{{{\sin }^{n+1}}\theta } \right)}^{\dfrac{n+1}{n}}}+C,
(c) 1n1(11sinn+1θ)n+1n+C\dfrac{1}{n-1}{{\left( 1-\dfrac{1}{{{\sin }^{n+1}}\theta } \right)}^{\dfrac{n+1}{n}}}+C,
(d) nn21(1+1sinn+1θ)n+1n+C\dfrac{n}{{{n}^{2}}-1}{{\left( 1+\dfrac{1}{{{\sin }^{n+1}}\theta } \right)}^{\dfrac{n+1}{n}}}+C.

Explanation

Solution

We start solving the problem by assigning a variable to the given indefinite integral (sinnθsinθ)1ncosθsinn+1θdθ\int{\dfrac{{{\left( {{\sin }^{n}}\theta -\sin \theta \right)}^{\dfrac{1}{n}}}\cos \theta }{{{\sin }^{n+1}}\theta }}d\theta . We take sinnθ{{\sin }^{n}}\theta common from inside of the bracket present in the numerator. We then make subsequent calculations and we then take 11sinn1θ=t1-\dfrac{1}{{{\sin }^{n-1}}\theta }=t to convert dθd\theta in terms of dtdt. We then use the property xndx=xn+1n+1+C\int{{{x}^{n}}dx=\dfrac{{{x}^{n+1}}}{n+1}+C} to solve the indefinite integral and we later substitute the value of t in the obtained results. We then make subsequent arrangements to get the required result.

Complete step-by-step solution:
According to the problem, we have to find the value of the indefinite integral (sinnθsinθ)1ncosθsinn+1θdθ\int{\dfrac{{{\left( {{\sin }^{n}}\theta -\sin \theta \right)}^{\dfrac{1}{n}}}\cos \theta }{{{\sin }^{n+1}}\theta }}d\theta given that n2n\ge 2 be a natural number and 0<θ<π20<\theta <\dfrac{\pi }{2}.
Let us assume the indefinite integral be ‘I’. So, we have I=(sinnθsinθ)1ncosθsinn+1θdθI=\int{\dfrac{{{\left( {{\sin }^{n}}\theta -\sin \theta \right)}^{\dfrac{1}{n}}}\cos \theta }{{{\sin }^{n+1}}\theta }}d\theta .
I=(sinnθ(1sinθsinnθ))1ncosθsinn+1θdθ\Rightarrow I=\int{\dfrac{{{\left( {{\sin }^{n}}\theta \left( 1-\dfrac{\sin \theta }{{{\sin }^{n}}\theta } \right) \right)}^{\dfrac{1}{n}}}\cos \theta }{{{\sin }^{n+1}}\theta }}d\theta .
I=(sinnθ)1n(1sinθsinnθ)1ncosθsinn+1θdθ\Rightarrow I=\int{\dfrac{{{\left( {{\sin }^{n}}\theta \right)}^{\dfrac{1}{n}}}{{\left( 1-\dfrac{\sin \theta }{{{\sin }^{n}}\theta } \right)}^{\dfrac{1}{n}}}\cos \theta }{{{\sin }^{n+1}}\theta }}d\theta .
I=(sinθ)(11sinn1θ)1ncosθsinn+1θdθ\Rightarrow I=\int{\dfrac{\left( \sin \theta \right){{\left( 1-\dfrac{1}{{{\sin }^{n-1}}\theta } \right)}^{\dfrac{1}{n}}}\cos \theta }{{{\sin }^{n+1}}\theta }}d\theta .
I=(11sinn1θ)1ncosθsinnθdθ\Rightarrow I=\int{\dfrac{{{\left( 1-\dfrac{1}{{{\sin }^{n-1}}\theta } \right)}^{\dfrac{1}{n}}}\cos \theta }{{{\sin }^{n}}\theta }}d\theta .
I=(11sinn1θ)1n(cosθsinnθ)dθ\Rightarrow I=\int{{{\left( 1-\dfrac{1}{{{\sin }^{n-1}}\theta } \right)}^{\dfrac{1}{n}}}\left( \dfrac{\cos \theta }{{{\sin }^{n}}\theta } \right)}d\theta ---(1).
Let us assume 11sinn1θ=t1-\dfrac{1}{{{\sin }^{n-1}}\theta }=t ---(2).
Let us differentiate them on both sides.
d(11sinn1θ)=dt\Rightarrow d\left( 1-\dfrac{1}{{{\sin }^{n-1}}\theta } \right)=dt.
We know that d(a+b)=d(a)+d(b)d\left( a+b \right)=d\left( a \right)+d\left( b \right).
d(1)d(1sinn1θ)=dt\Rightarrow d\left( 1 \right)-d\left( \dfrac{1}{{{\sin }^{n-1}}\theta } \right)=dt.
We know that d(a)=0d\left( a \right)=0 and d(1yn)=nyn+1dyd\left( \dfrac{1}{{{y}^{n}}} \right)=\dfrac{-n}{{{y}^{n+1}}}dy.
0((n1)sinn1+1θ)d(sinθ)=dt\Rightarrow 0-\left( \dfrac{-\left( n-1 \right)}{{{\sin }^{n-1+1}}\theta } \right)d\left( \sin \theta \right)=dt.
We know that d(sinθ)=cosθdθd\left( \sin \theta \right)=\cos \theta d\theta .
((n1)sinnθ)(cosθ)dθ=dt\Rightarrow \left( \dfrac{\left( n-1 \right)}{{{\sin }^{n}}\theta } \right)\left( \cos \theta \right)d\theta =dt.
((cosθ)sinnθ)dθ=dt(n1)\Rightarrow \left( \dfrac{\left( \cos \theta \right)}{{{\sin }^{n}}\theta } \right)d\theta =\dfrac{dt}{\left( n-1 \right)} ---(3).
We substitute equation (2) and (3) in equation (1).
I=(t)1ndt(n1)\Rightarrow I=\int{{{\left( t \right)}^{\dfrac{1}{n}}}}\dfrac{dt}{\left( n-1 \right)}.
I=1(n1)(t)1ndt\Rightarrow I=\dfrac{1}{\left( n-1 \right)}\int{{{\left( t \right)}^{\dfrac{1}{n}}}}dt.
We know that xndx=xn+1n+1+C\int{{{x}^{n}}dx=\dfrac{{{x}^{n+1}}}{n+1}+C}.
I=1(n1)(t1n+11n+1)+C\Rightarrow I=\dfrac{1}{\left( n-1 \right)}\left( \dfrac{{{t}^{\dfrac{1}{n}+1}}}{\dfrac{1}{n}+1} \right)+C.
I=1(n1)(t1n+11+nn)+C\Rightarrow I=\dfrac{1}{\left( n-1 \right)}\left( \dfrac{{{t}^{\dfrac{1}{n}+1}}}{\dfrac{1+n}{n}} \right)+C.
I=n(n1)(n+1)(t1+nn)+C\Rightarrow I=\dfrac{n}{\left( n-1 \right)\left( n+1 \right)}\left( {{t}^{\dfrac{1+n}{n}}} \right)+C.
I=n(n21)(tn+1n)+C\Rightarrow I=\dfrac{n}{\left( {{n}^{2}}-1 \right)}\left( {{t}^{\dfrac{n+1}{n}}} \right)+C -----(4).
From equation (2) we have t=11sinn1θt=1-\dfrac{1}{{{\sin }^{n-1}}\theta }. We substitute this in equation (4).
I=n(n21)((11sinn1θ)n+1n)+C\Rightarrow I=\dfrac{n}{\left( {{n}^{2}}-1 \right)}\left( {{\left( 1-\dfrac{1}{{{\sin }^{n-1}}\theta } \right)}^{\dfrac{n+1}{n}}} \right)+C. Where C is integration constant.
We have found the value of the indefinite integral (sinnθsinθ)1ncosθsinn+1θdθ\int{\dfrac{{{\left( {{\sin }^{n}}\theta -\sin \theta \right)}^{\dfrac{1}{n}}}\cos \theta }{{{\sin }^{n+1}}\theta }}d\theta as n(n21)((11sinn1θ)n+1n)+C\dfrac{n}{\left( {{n}^{2}}-1 \right)}\left( {{\left( 1-\dfrac{1}{{{\sin }^{n-1}}\theta } \right)}^{\dfrac{n+1}{n}}} \right)+C.
\therefore If n2n\ge 2 be a natural number and 0<θ<π20<\theta <\dfrac{\pi }{2}, then the value of indefinite integral (sinnθsinθ)1ncosθsinn+1θdθ\int{\dfrac{{{\left( {{\sin }^{n}}\theta -\sin \theta \right)}^{\dfrac{1}{n}}}\cos \theta }{{{\sin }^{n+1}}\theta }}d\theta is n(n21)((11sinn1θ)n+1n)+C\dfrac{n}{\left( {{n}^{2}}-1 \right)}\left( {{\left( 1-\dfrac{1}{{{\sin }^{n-1}}\theta } \right)}^{\dfrac{n+1}{n}}} \right)+C.
The correct option for the given problem is (a).

Note: We should not make mistakes while making calculations related to integrals. We have given an indefinite integral in the given problem, which means we have to re substitute the value of assumed variables again after getting results. If we have definite integral with limits, then there is no need to worry about re-substitution again as the values of limits change after making a change in substitution. Adding integration constant is necessary while solving an indefinite integral.