Question
Question: Let N denote the set of all natural numbers and R be the relation on \(N \times N\) defined by (a, b...
Let N denote the set of all natural numbers and R be the relation on N×N defined by (a, b) R (c, d) if
ad(b+c)=bc(a+d) then R is
A
Symmetric only
B
Reflexive only
C
Transitive only
D
An equivalence relation
Answer
An equivalence relation
Explanation
Solution
For (a, b), (c, d) ∈ N × N
(a,b)R(c,d)⇒ad(b+c)=bc(a+d)Reflexive: Since ab(b+a)
= ba(a+b)∀ab∈N ,
∴ ∴R is reflexive.
Symmetric: For (a,b)R(c,d)
∴ ad(b+c)=bc(a+d) ⇒ bc(a+d)=ad(b+c)
⇒ cb(d+a)=da(c+b) ⇒ (c,d)R(a,b)
∴ R is symmetric
Transitive: For (a,b),(c,d),(e,f)∈N×N
Let (a,b)R(c,d),(c,d)R(e,f)
∴ ad(b+c)=bc(a+d) , cf(d+e)=de(c+f)
⇒ adb+adc=bca+bcd .....(i)
and cfd+cfe=dec+def .......(ii)
(i) × ef+ (ii) × ab gives,
= adcf(b+e)=bcde(a+f)
⇒ af(b+e)=be(a+f)⇒ (a,b)R(e,f).
∴ R is transitive. Hence R is an equivalence relation.