Solveeit Logo

Question

Question: Let N denote the set of all natural numbers and R be the relation on \(N \times N\) defined by (a, b...

Let N denote the set of all natural numbers and R be the relation on N×NN \times N defined by (a, b) R (c, d) if

ad(b+c)=bc(a+d)a d ( b + c ) = b c ( a + d ) then R is

A

Symmetric only

B

Reflexive only

C

Transitive only

D

An equivalence relation

Answer

An equivalence relation

Explanation

Solution

For (a, b), (c, d) ∈ N × N

(a,b)R(c,d)ad(b+c)=bc(a+d)( a , b ) R ( c , d ) \Rightarrow a d ( b + c ) = b c ( a + d )Reflexive: Since ab(b+a)a b ( b + a )

= ba(a+b)abNb a ( a + b ) \forall a b \in N ,

\therefore \thereforeR is reflexive.

Symmetric: For (a,b)R(c,d)( a , b ) R ( c , d )

\therefore ad(b+c)=bc(a+d)a d ( b + c ) = b c ( a + d )bc(a+d)=ad(b+c)b c ( a + d ) = a d ( b + c )

cb(d+a)=da(c+b)c b ( d + a ) = d a ( c + b )(c,d)R(a,b)( c , d ) R ( a , b )

\therefore R is symmetric

Transitive: For (a,b),(c,d),(e,f)N×N( a , b ) , ( c , d ) , ( e , f ) \in N \times N

Let (a,b)R(c,d),(c,d)R(e,f)( a , b ) R ( c , d ) , ( c , d ) R ( e , f )

\therefore ad(b+c)=bc(a+d)a d ( b + c ) = b c ( a + d ) , cf(d+e)=de(c+f)c f ( d + e ) = d e ( c + f )

adb+adc=bca+bcda d b + a d c = b c a + b c d .....(i)

and cfd+cfe=dec+defc f d + c f e = d e c + d e f .......(ii)

(i) × ef+e f + (ii) × aba b gives,

= adcf(b+e)=bcde(a+f)a d c f ( b + e ) = b c d e ( a + f )

af(b+e)=be(a+f)a f ( b + e ) = b e ( a + f )(a,b)R(e,f)( a , b ) R ( e , f ).

\therefore R is transitive. Hence R is an equivalence relation.