Solveeit Logo

Question

Question: Let n be an even integer and k =\(\frac{3n}{2}\). Then the value of \(\sum_{r = 1}^{k}{(–3)^{r–1}}\)...

Let n be an even integer and k =3n2\frac{3n}{2}. Then the value of r=1k(3)r1\sum_{r = 1}^{k}{(–3)^{r–1}}3nC2r –1 is –

A

0

B

1

C

2

D

3

Answer

0

Explanation

Solution

Since n is an even integer. Therefore, n = 2m, m Ī N.

Also, k = 3n2\frac{3n}{2} Ž k = 3m.

\ r=1k(3)r1\sum_{r = 1}^{k}{(–3)^{r - 1}}3nC2r–1

= r=13m(3)r1\sum_{r = 1}^{3m}{(–3)^{r - 1}}6mC2r–1

= 6mC16mC3 (3) + 6mC5 (3)26mC7 (3)3 + ….. + (–3)3m–1 6mC6m–1

Now, (1 + i3\sqrt{3})6m = r=06m6mCr(i3)r\sum_{r = 0}^{6m}{6mC_{r}(i\sqrt{3})^{r}}

Ž 26m {cosπ3+isinπ3}6m\left\{ \cos\frac{\pi}{3} + i\sin\frac{\pi}{3} \right\}^{6m}

= 6mC0 + 6mC1(i3\sqrt{3}) + 6mC2 (i3\sqrt{3})2 + ….+ 6mC3(i3\sqrt{3})3 + … + 6mC6m(i3\sqrt{3})6m

Ž 26m (cos 2mp + i sin 2mp)

= {6mC06mC2 3 + 6mC4 32 – ….}

+i3\sqrt{3}{6mC16mC3 (3) + 6mC5(3)4 – ….}

[Using de moivre’s theorem on L.H.S.]

Equating imaginary parts on both sides, we get

26m sin 2mp = 3\sqrt{3}{6mC16mC3 (3) + 6mC5 (3)4 – ….}

Ž 6mC16mC3 (3) + 6mC5 (3)4 – …. = 0 [Q sin 2mp = 0]

Ž r=13m(3)r1\sum_{r = 1}^{3m}{(–3)^{r - 1}}6mC2r–1 = 0

Ž r=1k(3)r1\sum_{r = 1}^{k}{(–3)^{r - 1}}3nC2r – 1 = 0, where n = 2m and k = 3n2\frac{3n}{2}.

Hence (1) is correct answer.