Solveeit Logo

Question

Question: Let \[n\] be a positive integer such that \[\sin \dfrac{\pi }{{2n}} + \cos \dfrac{\pi }{{2n}} = \dfr...

Let nn be a positive integer such that sinπ2n+cosπ2n=n2\sin \dfrac{\pi }{{2n}} + \cos \dfrac{\pi }{{2n}} = \dfrac{{\sqrt n }}{2} . Then
A. 6n86 \leqslant n \leqslant 8
B. 4<n84 < n \leqslant 8
C. 4n84 \leqslant n \leqslant 8
D. 4<n<84 < n < 8

Explanation

Solution

Hint : In this question, we have to find the value of nn that satisfy the given an inequality sinπ2n+cosπ2n=n2\sin \dfrac{\pi }{{2n}} + \cos \dfrac{\pi }{{2n}} = \dfrac{{\sqrt n }}{2} . We first proceed by simplifying the given inequality and reducing it in terms of either sine or cosine. Then we will use the fact that the value of sine or cosine always lies between 1 - 1 and 11 . Thus we then equate the simplified inequality to lie between 1 - 1 and 11 , and solve to get the required value of nn .

Complete step-by-step answer :
The given question is based on application of trigonometry ratio. Trigonometric ratio is the ratio of the side of the right angled triangle. The various ratios are sine, cosine, tangent, cotangent, secant and cosecant. The value of trigonometric ratio Sine and Cosine always lies between 1 - 1 and 11 .
Consider the given question,
The given inequality is: sinπ2n+cosπ2n=n2\sin \dfrac{\pi }{{2n}} + \cos \dfrac{\pi }{{2n}} = \dfrac{{\sqrt n }}{2}
On squaring both sides, we have
(sinπ2n+cosπ2n)2=(n2)2\Rightarrow {\left( {\sin \dfrac{\pi }{{2n}} + \cos \dfrac{\pi }{{2n}}} \right)^2} = {\left( {\dfrac{{\sqrt n }}{2}} \right)^2}
sin2π2n+cos2π2n+2sinπ2ncosπ2n=n4\Rightarrow {\sin ^2}\dfrac{\pi }{{2n}} + {\cos ^2}\dfrac{\pi }{{2n}} + 2\sin \dfrac{\pi }{{2n}}\cos \dfrac{\pi }{{2n}} = \dfrac{n}{4}
We know that, sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1 and 2sinθcosθ=sin2θ2\sin \theta \cos \theta = \sin 2\theta .
Taking θ=π2n\theta = \dfrac{\pi }{{2n}} , we have sin2π2n+cos2π2n=1{\sin ^2}\dfrac{\pi }{{2n}} + {\cos ^2}\dfrac{\pi }{{2n}} = 1 and 2sinπ2ncosπ2n=sin2(π2n)2\sin \dfrac{\pi }{{2n}}\cos \dfrac{\pi }{{2n}} = \sin 2\left( {\dfrac{\pi }{{2n}}} \right)
Therefore, we have
1+sin2(π2n)=n4\Rightarrow 1 + \sin 2\left( {\dfrac{\pi }{{2n}}} \right) = \dfrac{n}{4}
On subtracting 1 from both side, we get
sin(πn)=n41\Rightarrow \sin \left( {\dfrac{\pi }{n}} \right) = \dfrac{n}{4} - 1 ………………………….. eq(i)
Now we know that the value of sine lies between 1 - 1 and 11 .
i.e. 1sinθ1 - 1 \leqslant \sin \theta \leqslant 1
Taking θ=πn\theta = \dfrac{\pi }{n} , we have 1sin(πn)1 - 1 \leqslant \sin \left( {\dfrac{\pi }{n}} \right) \leqslant 1
Since we are given that nn is positive integer, therefore we have
0sin(πn)1\Rightarrow 0 \leqslant \sin \left( {\dfrac{\pi }{n}} \right) \leqslant 1
From eq(i), we have
0n411\Rightarrow 0 \leqslant \dfrac{n}{4} - 1 \leqslant 1
Adding 11 to each part of inequality, we get
1n42\Rightarrow 1 \leqslant \dfrac{n}{4} \leqslant 2
Multiplying 44 to each part of inequality, we get
4n8\Rightarrow 4 \leqslant n \leqslant 8
Hence, Option (C)(C) is correct.
So, the correct answer is “Option C”.

Note : To find the square of (sinπ2n+cosπ2n)2{\left( {\sin \dfrac{\pi }{{2n}} + \cos \dfrac{\pi }{{2n}}} \right)^2} , we use the formula (a+b)2=a2+b2+2ab{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab
Taking a=sinπ2na = \sin \dfrac{\pi }{{2n}} and b=cosπ2nb = \cos \dfrac{\pi }{{2n}} into the formula, we have
(sinπ2n+cosπ2n)2=(sinπ2n)2+(cosπ2n)2+2(sinπ2n)(cosπ2n)\Rightarrow {\left( {\sin \dfrac{\pi }{{2n}} + \cos \dfrac{\pi }{{2n}}} \right)^2} = {\left( {\sin \dfrac{\pi }{{2n}}} \right)^2} + {\left( {\cos \dfrac{\pi }{{2n}}} \right)^2} + 2\left( {\sin \dfrac{\pi }{{2n}}} \right)\left( {\cos \dfrac{\pi }{{2n}}} \right)
On solving, we get
(sinπ2n+cosπ2n)2=sin2π2n+cos2π2n+2sinπ2ncosπ2n\Rightarrow {\left( {\sin \dfrac{\pi }{{2n}} + \cos \dfrac{\pi }{{2n}}} \right)^2} = {\sin ^2}\dfrac{\pi }{{2n}} + {\cos ^2}\dfrac{\pi }{{2n}} + 2\sin \dfrac{\pi }{{2n}}\cos \dfrac{\pi }{{2n}}
Product of two same numbers in root is the number itself.
i.e. 2×2=2\sqrt 2 \times \sqrt 2 = 2 or (2)2=2{\left( {\sqrt 2 } \right)^2} = 2 .