Solveeit Logo

Question

Question: Let n and k be positive integer such that n ³\(\frac{k(k + 1)}{2}\). The number of solution (x<sub>1...

Let n and k be positive integer such that n ³k(k+1)2\frac{k(k + 1)}{2}. The number of solution (x1, x2 …. xk), x1³ 1, x2³ 2, ……. xk³ k all integers satisfying x1 + x2 + … xk = n is –

A

2n + kCn

B

2n+k+k2Ck12n + k + k^{2}C_{k - 1}

C

2n+k+k2Cn2n + k + k^{2}C_{n}

D

None

Answer

None

Explanation

Solution

No. of solution x1 + x2 + … xk = n

= coefficient of xn in (x + x2 + x3 +… )

(x2 + x3+ … ) …. (xk + xk + 1 + ….)

= coefficient of xn in x 1 + 2 + …. k (1 + x + x2 + …)k

= coefficient of xn in xk(k+1)2x^{\frac{k(k + 1)}{2}} (1 – x)–k

= coefficient of xn – r in (1 – x)–k k(k+1)2=r\frac{k(k + 1)}{2} = r

coefficient of xn – r in [1 + kC1 x + k + 1C2 x2 + …]

k – 1 + n – rCn – r = k – 1 + n – rCk – 1 {r=k(k+1)2}\left\{ r = \frac{k(k + 1)}{2} \right\}

k – 1 + n – r = k – 1 + n – r

k – 1 + n – k(k+1)2\frac{k(k + 1)}{2} = k – 1 + n – k(k+1)2\frac{k(k + 1)}{2}

= 12\frac{1}{2} (2n – k2 + k – 2)

required no. of soln = mCn – r = mCk – 1

where m = 12\frac{1}{2} [2n – k2 + k – 2]