Solveeit Logo

Question

Question: Let $n = 75600$, then find the value of $\frac{4}{log_2 n} + \frac{3}{log_3 n} + \frac{2}{log_5 n} +...

Let n=75600n = 75600, then find the value of 4log2n+3log3n+2log5n+1log7n\frac{4}{log_2 n} + \frac{3}{log_3 n} + \frac{2}{log_5 n} + \frac{1}{log_7 n}

Answer

1

Explanation

Solution

Let the given expression be EE. We are given n=75600n = 75600. We first find the prime factorization of nn. n=75600=756×100n = 75600 = 756 \times 100 756=2×378=22×189=22×3×63=22×3×32×7=22×33×71756 = 2 \times 378 = 2^2 \times 189 = 2^2 \times 3 \times 63 = 2^2 \times 3 \times 3^2 \times 7 = 2^2 \times 3^3 \times 7^1 100=102=(2×5)2=22×52100 = 10^2 = (2 \times 5)^2 = 2^2 \times 5^2 So, n=(22×33×71)×(22×52)=22+2×33×52×71=24×33×52×71n = (2^2 \times 3^3 \times 7^1) \times (2^2 \times 5^2) = 2^{2+2} \times 3^3 \times 5^2 \times 7^1 = 2^4 \times 3^3 \times 5^2 \times 7^1.

The given expression is E=4log2n+3log3n+2log5n+1log7nE = \frac{4}{log_2 n} + \frac{3}{log_3 n} + \frac{2}{log_5 n} + \frac{1}{log_7 n}. Using the change of base formula for logarithms, 1logba=logab\frac{1}{log_b a} = log_a b, we can rewrite each term: 1log2n=logn2\frac{1}{log_2 n} = log_n 2 1log3n=logn3\frac{1}{log_3 n} = log_n 3 1log5n=logn5\frac{1}{log_5 n} = log_n 5 1log7n=logn7\frac{1}{log_7 n} = log_n 7

Substitute these into the expression EE: E=4×logn2+3×logn3+2×logn5+1×logn7E = 4 \times log_n 2 + 3 \times log_n 3 + 2 \times log_n 5 + 1 \times log_n 7

Using the logarithm property k×logba=logbakk \times log_b a = log_b a^k, we get: E=logn24+logn33+logn52+logn71E = log_n 2^4 + log_n 3^3 + log_n 5^2 + log_n 7^1

Using the logarithm property logbx+logby+logbz+...=logb(x×y×z×...)log_b x + log_b y + log_b z + ... = log_b (x \times y \times z \times ...), we can combine the terms: E=logn(24×33×52×71)E = log_n (2^4 \times 3^3 \times 5^2 \times 7^1)

From the prime factorization of nn, we know that n=24×33×52×71n = 2^4 \times 3^3 \times 5^2 \times 7^1. So, the expression becomes: E=lognnE = log_n n

Using the logarithm property logbb=1log_b b = 1, we have: E=1E = 1