Question
Mathematics Question on Binomial theorem
Let n ≥ 5 be an integer. If 9n – 8n – 1 = 64α and 6n – 5n – 1 = 25β, then α – β is equal to
A
1+nC2(8−5)+nC3(82−52)+...+nCn(8n−1−5n−1)
B
1+nC3(8−5)+nC4(82−52)+...+nCn(8n−2\-5n−2)
C
nC3(8−5)+nC4(82−52)+...+nCn(8n−2−5n−2)
D
nC4(8−5)+nC5(82−52)+...+nCn(8n−3\-5n−3)
Answer
nC3(8−5)+nC4(82−52)+...+nCn(8n−2−5n−2)
Explanation
Solution
The correct answer is (C) : nC3(8−5)+nC4(82−52)+...+nCn(8n−2−5n−2)
(1 + 8)n _– _8n – 1 = 64α
⇒1+8n+nC282+nC383+.....+nCn8n−8n−1=64α
⇒α=nC2+nC38+nC482+.....+nCn8n−2......(i)
Similarly
(1+5)n - 5n-1=25β
⇒1+5n+nC252+nC353+.....+nCn5n−5n−1=25β
⇒β=nC2+nC3.5+nC4.52+......+nCn5n−2.....(ii)
α−β=nC3(8−5)+nC4(82−52)+.....+nCn(8n−2−5n−2)