Solveeit Logo

Question

Question: Let minimum value of $f(x) = |x - a| + 2|x - 2|$ is $1 \ a > 2$. Consider an ellipse $\frac{x^2}{a^2...

Let minimum value of f(x)=xa+2x2f(x) = |x - a| + 2|x - 2| is 1 a>21 \ a > 2. Consider an ellipse x2a2+y24=1\frac{x^2}{a^2} + \frac{y^2}{4} = 1. Tangents are drawn from point P(1, 2) to the ellipse.

On the basis of above information answer the following:

If 'e' is eccentricity of given ellipse, then e can be -

A

32\frac{\sqrt{3}}{2}

B

53\frac{\sqrt{5}}{3}

C

13\frac{1}{3}

D

None of these

Answer

53\frac{\sqrt{5}}{3}

Explanation

Solution

The minimum value of f(x)=xa+2x2f(x) = |x - a| + 2|x - 2| with a>2a > 2 occurs at x=2x=2. Minimum value =f(2)=2a+222=2a= f(2) = |2 - a| + 2|2 - 2| = |2 - a|. Since a>2a > 2, 2a=a2|2 - a| = a - 2. Given minimum value is 1, a2=1    a=3a - 2 = 1 \implies a = 3. The ellipse is x2a2+y24=1    x232+y24=1    x29+y24=1\frac{x^2}{a^2} + \frac{y^2}{4} = 1 \implies \frac{x^2}{3^2} + \frac{y^2}{4} = 1 \implies \frac{x^2}{9} + \frac{y^2}{4} = 1. Semi-major axis a=3a' = 3, semi-minor axis b=2b' = 2. Eccentricity e=1b2a2=149=59=53e = \sqrt{1 - \frac{b'^2}{a'^2}} = \sqrt{1 - \frac{4}{9}} = \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{3}.