Solveeit Logo

Question

Question: Let \(A \cup B \cup C = U\). Then \(\{ ( A - B ) \cup ( B - C ) \cup ( C - A ) \} ^ { \prime }\) is ...

Let ABC=UA \cup B \cup C = U. Then {(AB)(BC)(CA)}\{ ( A - B ) \cup ( B - C ) \cup ( C - A ) \} ^ { \prime } is equal to

A

ABCA \cup B \cup C

B

A(BC)A \cup ( B \cap C )

C

ABCA \cap B \cap C

D

A(BC)A \cap ( B \cup C )

Answer

ABCA \cap B \cap C

Explanation

Solution

From Venn-Euler's Diagram,

Clearly, {(AB)(BC)(CA)}=ABC\{ ( A - B ) \cup ( B - C ) \cup ( C - A ) \} ^ { \prime } = A \cap B \cap C.