Solveeit Logo

Question

Question: Let \(f ( 0 , \lambda ) = 0\) has equal roots \(\lambda = 2,2\) and \(f ( \lambda , 0 ) = 0\) ha...

Let f(0,λ)=0f ( 0 , \lambda ) = 0 has equal roots λ=2,2\lambda = 2,2 and f(λ,0)=0f ( \lambda , 0 ) = 0 has roots then the centre of the circle is

A

(2,2910)\left( 2 , \frac { 29 } { 10 } \right)

B

(2910,2)\left( \frac { 29 } { 10 } , 2 \right)

C

(2,2910)\left( - 2 , \frac { 29 } { 10 } \right)

D

None

Answer

(2910,2)\left( \frac { 29 } { 10 } , 2 \right)

Explanation

Solution

f(x,y)x2+y2+2gx+2fy+c=0\because f ( x , y ) \equiv x ^ { 2 } + y ^ { 2 } + 2 g x + 2 f y + c = 0Now, f(0,λ)λ2+2fλ+c=0f ( 0 , \lambda ) \equiv \lambda ^ { 2 } + 2 f \lambda + c = 0 and its roots are 2, 2.

2+2=2f,2×2=c\therefore 2 + 2 = - 2 f , 2 \times 2 = c i.e.

f(λ,0)λ2+2gλ+c=0f ( \lambda , 0 ) \equiv \lambda ^ { 2 } + 2 g \lambda + c = 0 and its roots are 45,5\frac { 4 } { 5 } , 5.

g=2910,c=4g = \frac { - 29 } { 10 } , c = 4.

Hence, centre of the circle =(g,f)=(2910,2)= ( - g , - f ) = \left( \frac { 29 } { 10 } , 2 \right)