Solveeit Logo

Question

Question: Let \(f \left( x ^ { 2 } \right) = x ^ { 2 } ( 1 + x )\) then f (4) equals...

Let f(x2)=x2(1+x)f \left( x ^ { 2 } \right) = x ^ { 2 } ( 1 + x ) then f (4) equals

A

5/4

B

7

C

4

D

2

Answer

4

Explanation

Solution

By definition of f(x) we have f(x2)=0x2f(t)dt=x2+x3f \left( x ^ { 2 } \right) = \int _ { 0 } ^ { x ^ { 2 } } f ( t ) d t = x ^ { 2 } + x ^ { 3 }

(given)

Differentiate both sides, f(x2)2x+0=2x+3x2f \left( x ^ { 2 } \right) \cdot 2 x + 0 = 2 x + 3 x ^ { 2 }

Put,x=24f(4)=16f(4)=4x = 2 \Rightarrow 4 f ( 4 ) = 16 \Rightarrow f ( 4 ) = 4