Solveeit Logo

Question

Question: Let \(I _ { 2 }\) is equal to...

Let I2I _ { 2 } is equal to

A

π2I1\frac { \pi } { 2 } I _ { 1 }

B

πI1\pi I _ { 1 }

C

2πI1\frac { 2 } { \pi } I _ { 1 }

D

2I12 I _ { 1 }

Answer

2πI1\frac { 2 } { \pi } I _ { 1 }

Explanation

Solution

I1=aπaxf(sinx)dxI _ { 1 } = \int _ { a } ^ { \pi - a } x f ( \sin x ) d x =aπa(πx)f(sin(πx))dx= \int _ { a } ^ { \pi - a } ( \pi - x ) f ( \sin ( \pi - x ) ) d x,

[abf(x)dx=abf(a+bx)dx]\left[ \because \int _ { a } ^ { b } f ( x ) d x = \int _ { a } ^ { b } f ( a + b - x ) d x \right]

=aπa(πx)f(sinx)dx= \int _ { a } ^ { \pi - a } ( \pi - x ) f ( \sin x ) d x =aπaπf(sinx)dxI1= \int _ { a } ^ { \pi - a } \pi f ( \sin x ) d x - I _ { 1 }

2I1=πI2I2=2πI1\Rightarrow 2 I _ { 1 } = \pi I _ { 2 } \Rightarrow I _ { 2 } = \frac { 2 } { \pi } I _ { 1 } .