Solveeit Logo

Question

Question: Let matrix \(A=\left[ \begin{matrix} x & y & -z \\\ 1 & 2 & 3 \\\ 1 & 1 & 2 \\\ \en...

Let matrix A=[xyz 123 112 ]A=\left[ \begin{matrix} x & y & -z \\\ 1 & 2 & 3 \\\ 1 & 1 & 2 \\\ \end{matrix} \right] , where x,y,zNx,y,z\in N . If det(adj(adjA))=2834\det \left( adj\left( adjA \right) \right)={{2}^{8}}{{3}^{4}} , where adjAadjA denotes the adjoint of square matrix A, then the number of such matrices A is:
(a) 220
(b) 45
(c) 55
(d) 110

Explanation

Solution

To find the number of matrices like A, we have to use the property adj(adjA)=A(n1)2\left| adj\left( adjA \right) \right|={{\left| A \right|}^{{{\left( n-1 \right)}^{2}}}} (where n is the order of the matrix A) to find the value of determinant A. Then, we have to find the determinant of A from the given matrix and equate the value of A\left| A \right| from the previous step. The result of this step will be an equation of the form x1+x2+...+xn=m{{x}_{1}}+{{x}_{2}}+...+{{x}_{n}}=m whose solution is given by m1Cn1^{m-1}{{C}_{n-1}} . The value of this combination will be the required answer.

Complete step-by-step answer:
We have to find the number of matrices like A. We are given that det(adj(adjA))=2834\det \left( adj\left( adjA \right) \right)={{2}^{8}}{{3}^{4}} .
adj(adjA)=2834\left| adj\left( adjA \right) \right|={{2}^{8}}{{3}^{4}}
We know that adj(adjA)=A(n1)2\left| adj\left( adjA \right) \right|={{\left| A \right|}^{{{\left( n-1 \right)}^{2}}}} , where n is the order of the matrix A. Here, we can see that the order of the matrix, n=3n=3 .Therefore, we can write the given condition as
adj(adjA)=2834 A(31)2=2834 \begin{aligned} & \Rightarrow \left| adj\left( adjA \right) \right|={{2}^{8}}{{3}^{4}} \\\ & \Rightarrow {{\left| A \right|}^{{{\left( 3-1 \right)}^{2}}}}={{2}^{8}}{{3}^{4}} \\\ \end{aligned}
Let us simplify the LHS of the above equation.
A22=2834 A4=2834 \begin{aligned} & \Rightarrow {{\left| A \right|}^{{{2}^{2}}}}={{2}^{8}}{{3}^{4}} \\\ & \Rightarrow {{\left| A \right|}^{4}}={{2}^{8}}{{3}^{4}} \\\ \end{aligned}
We know that (am)n=amn{{\left( {{a}^{m}} \right)}^{n}}={{a}^{mn}} . Let us rewrite the exponents in the RHS using this rule.
A4=(22×3)4\Rightarrow {{\left| A \right|}^{4}}={{\left( {{2}^{2}}\times 3 \right)}^{4}}
From the above equation, we can see that the exponents on both the sides are equal. Hence, we can equate their bases.
A=(22×3)\Rightarrow \left| A \right|=\left( {{2}^{2}}\times 3 \right)
Now, let us simplify the RHS of the above equation.
A=4×3 A=12...(i) \begin{aligned} & \Rightarrow \left| A \right|=4\times 3 \\\ & \Rightarrow \left| A \right|=12...\left( i \right) \\\ \end{aligned}
Now, we are given with A=[xyz 123 112 ]A=\left[ \begin{matrix} x & y & -z \\\ 1 & 2 & 3 \\\ 1 & 1 & 2 \\\ \end{matrix} \right] . Let us find the determinant of the matrix A.
A=xyz 123 112  A=x(43)y(23)z(12) \begin{aligned} & \Rightarrow \left| A \right|=\left| \begin{matrix} x & y & -z \\\ 1 & 2 & 3 \\\ 1 & 1 & 2 \\\ \end{matrix} \right| \\\ & \Rightarrow \left| A \right|=x\left( 4-3 \right)-y\left( 2-3 \right)-z\left( 1-2 \right) \\\ \end{aligned}
Let us simplify the above equation.
A=x+y+z\Rightarrow \left| A \right|=x+y+z
We have to substitute (i) in the above equation.
x+y+z=12...(ii)\Rightarrow x+y+z=12...\left( ii \right)
We know that for equation of the form x1+x2+...+xn=m{{x}_{1}}+{{x}_{2}}+...+{{x}_{n}}=m , the solution is given as m1Cn1^{m-1}{{C}_{n-1}} . Here, from the above equation, we will get m=12m=12 and n=3n=3 . Hence, we can write the solution of the equation (ii) as
121C31 11C2 \begin{aligned} & ^{12-1}{{C}_{3-1}} \\\ & {{\Rightarrow }^{11}}{{C}_{2}} \\\ \end{aligned}
We know that nCr=n!r!(nr)!^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!} . Let us expand the above combination.
11C2=11!2!(112)! 11C2=11!2!9! \begin{aligned} & {{\Rightarrow }^{11}}{{C}_{2}}=\dfrac{11!}{2!\left( 11-2 \right)!} \\\ & {{\Rightarrow }^{11}}{{C}_{2}}=\dfrac{11!}{2!9!} \\\ \end{aligned}
We know that n!=n×(n2)×(n3)!n!=n\times \left( n-2 \right)\times \left( n-3 \right)! . Hence, we can write the above equation as
11C2=11×10×9!(2×1)9!{{\Rightarrow }^{11}}{{C}_{2}}=\dfrac{11\times 10\times 9!}{\left( 2\times 1 \right)9!}
Let us cancel 9! From the numerator and denominator of the RHS and simplify.
11C2=11×10(2×1) 11C2=1102 11C2=55 \begin{aligned} & {{\Rightarrow }^{11}}{{C}_{2}}=\dfrac{11\times 10}{\left( 2\times 1 \right)} \\\ & {{\Rightarrow }^{11}}{{C}_{2}}=\dfrac{110}{2} \\\ & {{\Rightarrow }^{11}}{{C}_{2}}=55 \\\ \end{aligned}
Therefore, 55 matrices like A are possible.

So, the correct answer is “Option (c)”.

Note: Students must know the properties and rules associated with matrices, determinants and adjoints. They must know to find the determinant of a matrix. They must be thorough with the basic solutions like the solution of the equation of the form x1+x2+...+xn=m{{x}_{1}}+{{x}_{2}}+...+{{x}_{n}}=m . Students must know the formula of permutations and combinations.