Solveeit Logo

Question

Question: Let matrix A =\(\begin{bmatrix} a & b & c \\ b & c & a \\ c & a & b \end{bmatrix}\) where a, b, c ar...

Let matrix A =[abcbcacab]\begin{bmatrix} a & b & c \\ b & c & a \\ c & a & b \end{bmatrix} where a, b, c are real positive numbers with abc = 1. If AT A = I, then a3 + b3 + c3 =

A

3

B

2

C

4

D

None

Answer

4

Explanation

Solution

ATA = [abcbcacab]\begin{bmatrix} a & b & c \\ b & c & a \\ c & a & b \end{bmatrix} [abcbcacab]\begin{bmatrix} a & b & c \\ b & c & a \\ c & a & b \end{bmatrix}

= [a2+b2+c2ab+bc+caac+ab+bcab+bc+cab2+c2+a2bc+ca+abca+ab+bcbc+ac+abc2+a2+b2]\begin{bmatrix} a^{2} + b^{2} + c^{2} & ab + bc + ca & ac + ab + bc \\ ab + bc + ca & b^{2} + c^{2} + a^{2} & bc + ca + ab \\ ca + ab + bc & bc + ac + ab & c^{2} + a^{2} + b^{2} \end{bmatrix}

ATA = I Ž a2 + b2 + c2 = 1, ab + bc + ca = 0

\ (a + b + c)2 = 1 + 2 (0) = 1 Ž a + b + c = 1

a3 + b3 + c3 – 3abc = (a + b + c) (a2 + b2 + c2 – ab – bc – ca)

a3 + b3 + c2 = 3x 1 + 1 = 4