Solveeit Logo

Question

Question: Let \(\mathbf{a},\mathbf{b}\) and \(\mathbf{c}\) be three non-zero vectors such that no two of these...

Let a,b\mathbf{a},\mathbf{b} and c\mathbf{c} be three non-zero vectors such that no two of these are collinear. If the vector a+2b\mathbf{a} + 2\mathbf{b} is collinear with c\mathbf{c} and b+3c\mathbf{b} + 3\mathbf{c} is collinear with a\mathbf{a} (λ\lambda being some non-zero scalar) then a+2b+6c\mathbf{a} + 2\mathbf{b} + 6\mathbf{c} equals

A

0

B

λb\lambda\mathbf{b}

C

λc\lambda\mathbf{c}

D

λa\lambda\mathbf{a}

Answer

0

Explanation

Solution

As a+2b\mathbf{a} + 2\mathbf{b} and c\mathbf{c} are collinear a+2b=λc\mathbf{a} + 2\mathbf{b} = \lambda\mathbf{c} ......(i)

Again b+3c\mathbf{b} + 3\mathbf{c} is collinear with a\mathbf{a}

\therefore b+3c\mathbf{b} + 3\mathbf{c} = μa\mu \mathbf { a } .....(ii)

(2μ+1)a( 2 \mu + 1 ) \mathbf { a } ......(iv)

From (iii) and (iv), (λ+6)c=(2μ+1)a( \lambda + 6 ) \mathbf { c } = ( 2 \mu + 1 ) \mathbf { a }

But a\mathbf { a } and C\mathbf { C } are non-zero , non-collinear vectors,

\therefore λ+6=0=2μ+1\lambda + 6 = 0 = 2 \mu + 1. Hence, a+2b+6c=0\mathbf { a } + 2 \mathbf { b } + 6 \mathbf { c } = \mathbf { 0 }