Solveeit Logo

Question

Question: Let \(\mathbf{a} = \mathbf{i} - \mathbf{j},\mathbf{b} = \mathbf{j} - \mathbf{k},\mathbf{c} = \mathbf...

Let a=ij,b=jk,c=ki\mathbf{a} = \mathbf{i} - \mathbf{j},\mathbf{b} = \mathbf{j} - \mathbf{k},\mathbf{c} = \mathbf{k} - \mathbf{i}. If d^\widehat{\mathbf{d}} is a unit vector such that a.d=0=[bcd]\mathbf{a}.\mathbf{d} = 0 = \lbrack\mathbf{bcd}\rbrack, then d^\widehat{\mathbf{d}} is equal to

A

±i+jk3\pm \frac{\mathbf{i} + \mathbf{j} - \mathbf{k}}{\sqrt{3}}

B

±i+j+k3\pm \frac{\mathbf{i} + \mathbf{j} + \mathbf{k}}{\sqrt{3}}

C

±i+j2k16\pm \frac{\mathbf{i} + \mathbf{j} - 2\mathbf{k}}{\sqrt{16}}

D

±k\pm \mathbf{k}

Answer

±i+j2k16\pm \frac{\mathbf{i} + \mathbf{j} - 2\mathbf{k}}{\sqrt{16}}

Explanation

Solution

Let d^=αi+βj+γk\widehat{\mathbf{d}} = \alpha\mathbf{i} + \beta\mathbf{j} + \gamma\mathbf{k}

a.d^=0\mathbf{a}.\widehat{\mathbf{d}} = 0(ij).(αi+βj+γk)=0(\mathbf{i} - \mathbf{j}).(\alpha\mathbf{i} + \beta\mathbf{j} + \gamma\mathbf{k}) = 0αβ=0\alpha - \beta = 0α=β[bcd]=0\alpha = \beta\lbrack\mathbf{bcd}\rbrack = 0(b×c).d=0(\mathbf{b} \times \mathbf{c}).\mathbf{d} = 0 ⇒ $\left| \begin{matrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \ 0 & 1 & - 1 \

  • 1 & 0 & 1 \end{matrix} \right|$ .

(αi+βj+γ6muk)=0(\alpha\mathbf{i} + \beta\mathbf{j} + \gamma\mspace{6mu}\mathbf{k}) = 0(i+j+k)6mu.6mu(α6mui+β6muj+γ6muk)=0(\mathbf{i} + \mathbf{j} + \mathbf{k})\mspace{6mu}.\mspace{6mu}(\alpha\mspace{6mu}\mathbf{i} + \beta\mspace{6mu}\mathbf{j} + \gamma\mspace{6mu}\mathbf{k}) = 0

α+β+γ=0\alpha + \beta + \gamma = 0γ=(α+β)=2α\gamma = - (\alpha + \beta) = - 2\alpha; (β=α)(\beta = \alpha)

d^=1|\widehat{\mathbf{d}}| = 1α2+β2+γ2=1\alpha^{2} + \beta^{2} + \gamma^{2} = 1α2+α2+4α2=1\alpha^{2} + \alpha^{2} + 4\alpha^{2} = 1

α=±16=β\alpha = \pm \frac{1}{\sqrt{6}} = \beta and γ=26\gamma = \mp \frac{2}{\sqrt{6}}

\therefore d^=±16(i+j2k)\widehat{\mathbf{d}} = \pm \frac{1}{\sqrt{6}}(\mathbf{i} + \mathbf{j} - 2\mathbf{k})