Question
Question: Let \(\mathbf{a} = \mathbf{i} - \mathbf{j},\mathbf{b} = \mathbf{j} - \mathbf{k},\mathbf{c} = \mathbf...
Let a=i−j,b=j−k,c=k−i. If d is a unit vector such that a.d=0=[bcd], then d is equal to
A
±3i+j−k
B
±3i+j+k
C
±16i+j−2k
D
±k
Answer
±16i+j−2k
Explanation
Solution
Let d=αi+βj+γk
a.d=0 ⇒ (i−j).(αi+βj+γk)=0 ⇒ α−β=0 ⇒ α=β[bcd]=0 ⇒ (b×c).d=0 ⇒ $\left| \begin{matrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \ 0 & 1 & - 1 \
- 1 & 0 & 1 \end{matrix} \right|$ .
(αi+βj+γ6muk)=0 ⇒ (i+j+k)6mu.6mu(α6mui+β6muj+γ6muk)=0
⇒ α+β+γ=0 ⇒ γ=−(α+β)=−2α; (β=α)
∣d∣=1 ⇒ α2+β2+γ2=1 ⇒ α2+α2+4α2=1
⇒ α=±61=β and γ=∓62
∴ d=±61(i+j−2k)