Solveeit Logo

Question

Mathematics Question on Integration by Partial Fractions

Let m1, m2 be the slopes of two adjacent sides of a square of side a such that a2+11a+3(m12+m22)=220a^2 + 11a + 3(m_1^2 + m_2^2) = 220. If one vertex of the square is (10(cosαsinα),10(sinα+cosα))(10(\cos \alpha - \sin \alpha), 10(\sin \alpha + \cos \alpha)), where α(0,π2)\alpha \in \left(0, \frac{\pi}{2}\right)and the equation of one diagonal is (cosαsinα)x+(sinα+cosα)y=10(\cos \alpha - \sin \alpha)x + (\sin \alpha + \cos \alpha)y = 10, then 72(sin4α+cos4α)+a23a+1372(\sin^4 \alpha + \cos^4 \alpha) + a^2 - 3a + 13 is equal to :

A

119

B

128

C

145

D

155

Answer

128

Explanation

Solution

One vertex of square is
(10(cosαsinα),10(sinα+cosα))(10(\cos \alpha - \sin \alpha), 10(\sin \alpha + \cos \alpha))
and one of the diagonal is
(cosαsinα)x+(sinα+cosα)y=10(\cos \alpha - \sin \alpha)x + (\sin \alpha + \cos \alpha)y = 10

So the other diagonal can be obtained as
(cosα+sinα)x(cosαsinα)y=0(\cos \alpha + \sin \alpha)x - (\cos \alpha - \sin \alpha)y = 0

So, point of intersection of diagonal will be
(5(cosαsinα),5(cosα+sinα))(5(\cos \alpha - \sin \alpha), 5(\cos \alpha + \sin \alpha))

Therefore, the vertex opposite to the given vertex is (0, 0).
So, the diagonal length
10210\sqrt{2}
Side length (a)=10(a) = 10

It is given that
a2+11a+3(m12+m22)=220a^2 + 11a + 3(m_1^2 + m_2^2) = 220
m12+m22=220100110=103m_1^2 + m_2^2 = 220 - 100 - 110 = 103
and m1m2=1m_1 \cdot m_2 = -1

Slopes of the sides are tanαandcotα\tan \alpha \quad \text{and} \quad -\cot \alpha
tan(2α)=3ortan(2α)=13\tan(2\alpha) = 3 \quad \text{or} \quad \tan(2\alpha) = \frac{1}{3}

72(sin4α+cos4α)+a23a+1372(\sin 4\alpha + \cos 4\alpha) + a^2 - 3a + 13
72tan4α+1(1+tan2α)2+a23a+13=12872 \cdot \tan^4 \alpha + \frac{1}{{(1 + \tan^2 \alpha)}^2} + a^2 - 3a + 13 = 128
So, the correct option is (B): 128128