Solveeit Logo

Question

Mathematics Question on Determinants

Let M|M| denote the determinant of a square matrix MM Let g:[0,π2]Rg:\left[0, \frac{\pi}{2}\right] \rightarrow R be the function defined by
g(θ)=f(θ)1+f(π2θ)1g (\theta)=\sqrt{f(\theta)-1}+\sqrt{f\left(\frac{\pi}{2}-\theta\right)-1}
where
f(θ)=121sinθ1 sinθ1sinθ 1sinθ1+sinπcos(θ+π4)tan(θπ4) sin(θπ4)cosπ2loge(4π) cot(θ+π4)loge(π4)tanπf(\theta)=\frac{1}{2}\begin{vmatrix}1 & \sin \theta & 1 \\\ -\sin \theta & 1 & \sin \theta \\\ -1 & -\sin \theta & 1\end{vmatrix}+\begin{vmatrix}\sin \pi & \cos \left(\theta+\frac{\pi}{4}\right) & \tan \left(\theta-\frac{\pi}{4}\right) \\\ \sin \left(\theta-\frac{\pi}{4}\right) & -\cos \frac{\pi}{2} & \log _{ e }\left(\frac{4}{\pi}\right) \\\ \cot \left(\theta+\frac{\pi}{4}\right) & \log _{ e }\left(\frac{\pi}{4}\right) & \tan \pi\end{vmatrix}
Let p(x)p (x) be a quadratic polynomial whose roots are the maximum and minimum values of the function g(θ)g (\theta), and p(2)=22p (2)=2-\sqrt{2} Then, which of the following is/are TRUE?

A

p(3+24)<0p \left(\frac{3+\sqrt{2}}{4}\right)<0

B

p(1+324)>0p \left(\frac{1+3 \sqrt{2}}{4}\right)>0

C

p(5214)>0p \left(\frac{5 \sqrt{2}-1}{4}\right)>0

D

p(524)<0p \left(\frac{5-\sqrt{2}}{4}\right)<0

Answer

p(3+24)<0p \left(\frac{3+\sqrt{2}}{4}\right)<0

Explanation

Solution

f(θ)=121sinθ1 sinθ1sinθ 1sinθ1+sinπcos(θ+π4)tan(θπ4) sin(θπ4)cosπ2loge(4π) cot(θ+π4)loge(π4)tanπf(\theta)=\frac{1}{2}\begin{vmatrix}1 & \sin \theta & 1 \\\ -\sin \theta & 1 & \sin \theta \\\ -1 & -\sin \theta & 1\end{vmatrix}+\begin{vmatrix}\sin \pi & \cos \left(\theta+\frac{\pi}{4}\right) & \tan \left(\theta-\frac{\pi}{4}\right) \\\ \sin \left(\theta-\frac{\pi}{4}\right) & -\cos \frac{\pi}{2} & \log _{ e }\left(\frac{4}{\pi}\right) \\\ \cot \left(\theta+\frac{\pi}{4}\right) & \log _{ e }\left(\frac{\pi}{4}\right) & \tan \pi\end{vmatrix}

As second determinant is skew symmetric hence its value is 0.
f(θ)=(1+sin2θ)⇒ f(\theta) = (1 + sin^2 \theta)
g(θ)=sinθ+cosθ[1,2]⇒ g(\theta)=|sin\theta|+|cos\theta| ∈ [1,\sqrt2]
⇒$$p(x) = a(x - 1) (x-\sqrt{2})\ as\ p(2) = 2 - \sqrt{2} ⇒a = 1
Hence p(3+24)<0p \left(\frac{3+\sqrt{2}}{4}\right)<0 and p(5214)>0p \left(\frac{5 \sqrt{2}-1}{4}\right)>0