Question
Mathematics Question on Determinants
Let ∣M∣ denote the determinant of a square matrix M Let g:[0,2π]→R be the function defined by
g(θ)=f(θ)−1+f(2π−θ)−1
where
f(θ)=211 −sinθ −1sinθ1−sinθ1sinθ1+sinπ sin(θ−4π) cot(θ+4π)cos(θ+4π)−cos2πloge(4π)tan(θ−4π)loge(π4)tanπ
Let p(x) be a quadratic polynomial whose roots are the maximum and minimum values of the function g(θ), and p(2)=2−2 Then, which of the following is/are TRUE?
p(43+2)<0
p(41+32)>0
p(452−1)>0
p(45−2)<0
p(43+2)<0
Solution
f(θ)=211 −sinθ −1sinθ1−sinθ1sinθ1+sinπ sin(θ−4π) cot(θ+4π)cos(θ+4π)−cos2πloge(4π)tan(θ−4π)loge(π4)tanπ
As second determinant is skew symmetric hence its value is 0.
⇒f(θ)=(1+sin2θ)
⇒g(θ)=∣sinθ∣+∣cosθ∣∈[1,2]
⇒$$p(x) = a(x - 1) (x-\sqrt{2})\ as\ p(2) = 2 - \sqrt{2} ⇒a = 1
Hence p(43+2)<0 and p(452−1)>0