Solveeit Logo

Question

Mathematics Question on Determinants

Let M|M| denote the determinant of a square matrix MM. Let g:[0,π2]Rg:\left[0, \frac{\pi}{2}\right] \rightarrow R be the function defined by
g(θ)=f(θ)1+f(π2θ)1g (\theta)=\sqrt{f(\theta)-1}+\sqrt{f\left(\frac{\pi}{2}-\theta\right)-1} where
f(θ)=121sinθ1 sinθ1sinθ 1sinθ1+sinπcos(θ+π4)tan(θπ4) sin(θπ4)cosπ2loge(4π) cot(θ+π4)loge(π4)tanπf(\theta)=\frac{1}{2}\begin{vmatrix}1 & \sin \theta & 1 \\\ -\sin \theta & 1 & \sin \theta \\\ -1 & -\sin \theta & 1\end{vmatrix}+\begin{vmatrix}\sin \pi & \cos \left(\theta+\frac{\pi}{4}\right) & \tan \left(\theta-\frac{\pi}{4}\right) \\\ \sin \left(\theta-\frac{\pi}{4}\right) & -\cos \frac{\pi}{2} & \log _{ e }\left(\frac{4}{\pi}\right) \\\ \cot \left(\theta+\frac{\pi}{4}\right) & \log _{ e }\left(\frac{\pi}{4}\right) & \tan \pi\end{vmatrix}
Let p(x)p (x) be a quadratic polynomial whose roots are the maximum and minimum values of the function g(θ)g (\theta), and p(2)=22p (2)=2-\sqrt{2}. Then, which of the following is/are TRUE?

A

p(3+24)<0p \left(\frac{3+\sqrt{2}}{4}\right)<0

B

p(1+324)>0p \left(\frac{1+3 \sqrt{2}}{4}\right)>0

C

p(5214)>0p \left(\frac{5 \sqrt{2}-1}{4}\right)>0

D

p(524)<0p \left(\frac{5-\sqrt{2}}{4}\right)<0

Answer

p(5214)>0p \left(\frac{5 \sqrt{2}-1}{4}\right)>0

Explanation

Solution

Given :
f(θ)=121sinθ1 sinθ1sinθ 1sinθ1+sinπcos(θ+π4)tan(θπ4) sin(θπ4)cosπ2logc(4π) cot(θ+π4)logc(π4)tanπf(\theta)=\frac{1}{2}\begin{vmatrix}1 & \sin \theta & 1 \\\ -\sin \theta & 1 & \sin \theta \\\ -1 & -\sin \theta & 1\end{vmatrix}+\begin{vmatrix}\sin \pi & \cos \left(\theta+\frac{\pi}{4}\right) & \tan \left(\theta-\frac{\pi}{4}\right) \\\ \sin \left(\theta-\frac{\pi}{4}\right) & -\cos \frac{\pi}{2} & \log _{ c }\left(\frac{4}{\pi}\right) \\\ \cot \left(\theta+\frac{\pi}{4}\right) & \log _{ c}\left(\frac{\pi}{4}\right) & \tan \pi\end{vmatrix}
f(θ)=122sinθ1 01sinθ 0sinθ1+0sin(θπ4)tan(θπ4) sin(θπ4)0logc(4π) tan(θπ4)logc(π4)0f(\theta)=\frac{1}{2}\begin{vmatrix}2 & \sin \theta & 1 \\\ 0 & 1 & \sin \theta \\\ 0 & -\sin \theta & 1\end{vmatrix}+\begin{vmatrix}0 & -\sin \left(\theta-\frac{\pi}{4}\right) & \tan \left(\theta-\frac{\pi}{4}\right) \\\ \sin \left(\theta-\frac{\pi}{4}\right) & 0 & \log _{ c }\left(\frac{4}{\pi}\right) \\\ -\tan \left(\theta-\frac{\pi}{4}\right) & \log _{ c }\left(\frac{\pi}{4}\right) & 0\end{vmatrix}
f(θ)=(1+sin2θ)+0f(\theta)=(1+\sin^2\theta)+0 ( skew symmetric )
Now,
g(θ)=f(θ)1+f(π2θ)1g(\theta)=\sqrt{f(\theta)-1}+\sqrt{f(\frac{\pi}{2}-\theta)-1}
=sinθ+cosθ for θ[0,π2]=|\sin\theta|+|\cos\theta|\ \text{for}\ \theta \in[0,\frac{\pi}{2}]
g(θ)[1,2]g(\theta)\in[1,\sqrt2]
Now, Again
Let P(x)=k(x2)(x1)P(x)=k(x-\sqrt2)(x-1)
22=k(22(21)2-\sqrt2=k(2-\sqrt2(2-1)
So, k = 1 as P(2)=22P(2)=2-\sqrt2 is given.
Hence, P(x)=(x2)(x1)P(x)=(x-\sqrt2)(x-1)
Now, let's verify the options :
(A) P(3+24)<0P(\frac{3+\sqrt2}{4})\lt0 So, option (A) is correct.
(B) P(1+324)<0P(\frac{1+3\sqrt2}{4})\lt0 So, option (B) is incorrect.
(C) P(5214)>0P(\frac{5\sqrt2-1}{4})\gt0 So, option (C) is correct.
(D) P(524)>0P(\frac{5-\sqrt2}{4})\gt0 So, option (D) is incorrect.
So, the correct options are (A) and (C).