Question
Mathematics Question on Determinants
Let ∣M∣ denote the determinant of a square matrix M. Let g:[0,2π]→R be the function defined by
g(θ)=f(θ)−1+f(2π−θ)−1 where
f(θ)=211 −sinθ −1sinθ1−sinθ1sinθ1+sinπ sin(θ−4π) cot(θ+4π)cos(θ+4π)−cos2πloge(4π)tan(θ−4π)loge(π4)tanπ
Let p(x) be a quadratic polynomial whose roots are the maximum and minimum values of the function g(θ), and p(2)=2−2. Then, which of the following is/are TRUE?
p(43+2)<0
p(41+32)>0
p(452−1)>0
p(45−2)<0
p(452−1)>0
Solution
Given :
f(θ)=211 −sinθ −1sinθ1−sinθ1sinθ1+sinπ sin(θ−4π) cot(θ+4π)cos(θ+4π)−cos2πlogc(4π)tan(θ−4π)logc(π4)tanπ
f(θ)=212 0 0sinθ1−sinθ1sinθ1+0 sin(θ−4π) −tan(θ−4π)−sin(θ−4π)0logc(4π)tan(θ−4π)logc(π4)0
f(θ)=(1+sin2θ)+0 ( skew symmetric )
Now,
g(θ)=f(θ)−1+f(2π−θ)−1
=∣sinθ∣+∣cosθ∣ for θ∈[0,2π]
g(θ)∈[1,2]
Now, Again
Let P(x)=k(x−2)(x−1)
2−2=k(2−2(2−1)
So, k = 1 as P(2)=2−2 is given.
Hence, P(x)=(x−2)(x−1)
Now, let's verify the options :
(A) P(43+2)<0 So, option (A) is correct.
(B) P(41+32)<0 So, option (B) is incorrect.
(C) P(452−1)>0 So, option (C) is correct.
(D) P(45−2)>0 So, option (D) is incorrect.
So, the correct options are (A) and (C).