Solveeit Logo

Question

Mathematics Question on Matrices and Determinants

Let M= (1βˆ’10Β βˆ’a2βˆ’1\0βˆ’11)\begin{pmatrix} 1 & -1 & 0\\\ -a & 2 & -1 \\\0&-1&1\end{pmatrix}If a non-zero vector 𝑋=(π‘₯, 𝑦, 𝑧)Tβˆˆβ„3 satisfies 𝑀6𝑋=𝑋, then a subspace of ℝ3 that contains the vector 𝑋 is

A

{(π‘₯, 𝑦, 𝑧)π‘‡βˆˆβ„3 ∢ π‘₯=0, 𝑦+𝑧=0}

B

{(π‘₯, 𝑦, 𝑧) π‘‡βˆˆ ℝ3 βˆΆπ‘¦ = 0, π‘₯+𝑧=0}

C

{(π‘₯, 𝑦, 𝑧) 𝑇 ∈ ℝ3 ∢ 𝑧=0, π‘₯+𝑦=0}

D

{(π‘₯, 𝑦, 𝑧) 𝑇 ∈ ℝ3 ∢π‘₯=0, π‘¦βˆ’π‘§=0}

Answer

{(π‘₯, 𝑦, 𝑧) π‘‡βˆˆ ℝ3 βˆΆπ‘¦ = 0, π‘₯+𝑧=0}

Explanation

Solution

The correct option is (B): {(π‘₯, 𝑦, 𝑧) π‘‡βˆˆ ℝ3 βˆΆπ‘¦ = 0, π‘₯+𝑧=0}