Question
Mathematics Question on Sets
Let M=[sin4θ 1+cos2θ−1−sin2θcos4θ]=αI+βM−1 where α=α(θ) and β=β(θ) are real numbers, and I is the 2 x 2 identity matrix. If α∗ is the minimum of the set \left\\{\alpha\left(\theta\right):\theta\,\in[\,0,2\pi)\right\\} and β∗ is the minimum of the set \left\\{\beta\left(\theta\right):\theta\,\in[\,0,2\pi)\right\\}, then the value of α∗+β∗ is
−1637
−1631
−1629
−1617
−1629
Solution
M=[sin4θ 1+cos2θ−1−sin2θcos4θ]=αl+βM−1
∴det(M)=∣M∣=sin4θ⋅cos4θ+sin2θcos2θ+2
=\left\\{\left(sin^{2}\theta cos^{2}\theta+\frac{1}{2}\right)^{2}+\frac{7}{4}\right\\}
[sin4θ 1+cos2θ−1−sin2θcos4θ]=[α 00α]+∣M∣β[cos4θ −1−cos2θ1+sin2θsin4θ]
∴α=cos4θ+sin4θ=1−21(sin22θ)
and β=−∣M∣
=-\left\\{\left(sin^{2}\,\theta\cdot cos^{2}\,\theta+\frac{1}{2}\right)^{2}+\frac{7}{4}\right\\}
∴αmin=21 and βmin=−1637
∴α∗+β∗=21−1637=−1629