Solveeit Logo

Question

Mathematics Question on Determinants

Let mm be the minimum possible value of log3(3y1+3y2+3y3)\log _{3}\left(3^{y_{1}}+3^{y_{2}}+3^{y_{3}}\right), where y1,y2,y3y_{1}, y_{2}, y_{3} are real numbers for which y1+y2+y3=9y_{1}+y_{2}+y_{3}=9 .Let MM be the maximum possible value of (log3x1+log3x2+log3x3)\left(\log _{3} x_{1}+\log _{3} x_{2}+\log _{3} x_{3}\right), where x1,x2,x3x_{1}, x_{2}, x_{3} are positive real numbers for which x1+x2+x3=9x_{1}+x_{2}+x_{3}=9 .Then the value of log2(m3)+log3(M2)\log _{2}\left(m^{3}\right)+\log _{3}\left(M^{2}\right) is_______

Answer

The Value of\text{The Value of} log2(m3)+log3(M2)\log_2(m^3)+\log_3(M^2) is  8.is\;\underline{8}.