Solveeit Logo

Question

Question: Let m be a positive integer and ∆<sub>r</sub> =\(\left| \begin{matrix} 2r - 1 & mC_{r} & 1 \\ m^{2}...

Let m be a positive integer and ∆r

=2r1mCr1m212mm+1sin2(m2)sin2(m)sin2(m+1)\left| \begin{matrix} 2r - 1 & mC_{r} & 1 \\ m^{2} - 1 & 2^{m} & m + 1 \\ \sin^{2}(m^{2}) & \sin^{2}(m) & \sin^{2}(m + 1) \end{matrix} \right|= (0 ≤ r ≤ m) then the value of r=0mΔr\sum_{r = 0}^{m}\Delta_{r}is given by –

A

0

B

m2 – 1

C

2m

D

2m sin2 (2m)

Answer

0

Explanation

Solution

r=0m(2r1)\sum_{r = 0}^{m}{(2r - 1)}= sum of (m + 1) terms of an A.P.

whose first term is –1, d = 2 ∴ S = m2 – 1

r=0mmCr\sum_{r = 0}^{m}{mC_{r}}= sum of binomial coefficient = 2m 1\sum_{}^{}1= m + 1

∴ R1 and R2 will be identical and hence ∆ = 0.