Question
Question: Let M be a 3x3 matrix satisfying \[M\left( {\begin{array}{*{20}{c}} 0 \\\ 1 \\\ 0 ...
Let M be a 3x3 matrix satisfying
0 \\\ 1 \\\ 0 \end{array}} \right) = \left( {\begin{array}{*{20}{c}} { - 1} \\\ 2 \\\ 3 \end{array}} \right)$$ , $M\left( {\begin{array}{*{20}{c}} 1 \\\ { - 1} \\\ 0 \end{array}} \right) = \left( {\begin{array}{*{20}{c}} 1 \\\ 1 \\\ { - 1} \end{array}} \right)$ and $M\left( {\begin{array}{*{20}{c}} 1 \\\ 1 \\\ 1 \end{array}} \right) = \left( {\begin{array}{*{20}{c}} 0 \\\ 0 \\\ {12} \end{array}} \right)$ . Then the sum of diagonal entries of M isSolution
There are three given equations, and M is a 3x3 matrix. First consider the elements of as some variable and expand equations with these elements of M and we get some simple algebraic equations in the terms of elements of matrix M. Using these algebraic equations calculate all elements of M. To find sum of diagonal entries add up all the elements present on diagonal of matrix M.
Complete step-by-step answer:
Let M = \left( {\begin{array}{*{20}{c}}
{{a_{11}}}&{{a_{12}}}&{{a_{13}}} \\\
{{a_{21}}}&{{a_{22}}}&{{a_{23}}} \\\
{{a_{31}}}&{{a_{32}}}&{{a_{33}}}
\end{array}} \right)
Given M\left( {\begin{array}{*{20}{c}}
0 \\\
1 \\\
0
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{ - 1} \\\
2 \\\
3
\end{array}} \right) -(i),
M\left( {\begin{array}{*{20}{c}}
1 \\\
{ - 1} \\\
0
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
1 \\\
1 \\\
{ - 1}
\end{array}} \right) -(ii) and
M\left( {\begin{array}{*{20}{c}}
1 \\\
1 \\\
1
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
0 \\\
0 \\\
{12}
\end{array}} \right) -(iii).
By expanding eqn. (i), we get