Solveeit Logo

Question

Mathematics Question on Properties of Determinants

Let MM be a 3×33 \times 3 non-singular matrix with det(M)=αdet(M)=\alpha. If [M1adj(adj(M)]=KI\left[M^{-1} adj(adj(M)]=K I\right., then the value of KK is

A

1

B

α\alpha

C

α2\alpha^2

D

α3\alpha^3

Answer

α\alpha

Explanation

Solution

Formulae:- A1=1Aadj(A)A ^{-1}=\frac{1}{| A |} adj( A )
Aadj(A)=AI=adj(A)AA \cdot adj( A )=| A | I =adj( A ) \cdot A
adj(adjA)=A(n2)Aadj(adj A)=| A |^{( n -2)} A
Now, [M1adj(adj(M)]{\left[ M ^{-1} adj(adj( M )]\right.}
=1Madj(M)M(32)M=\frac{1}{| M |} adj( M ) \cdot| M |^{(3-2)} M
=adj(M)M=adj( M ) \cdot M
=MI=| M | I
=αI=\alpha I
k=α\therefore k =\alpha