Solveeit Logo

Question

Question: Let m and n be two positive integers greater than 1. If \(\mathop {\lim }\limits_{\alpha \to 0} \lef...

Let m and n be two positive integers greater than 1. If limα0(ecos(αn)eαm)=e2\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{{e^{\cos \left( {{\alpha ^n}} \right)}} - e}} {{{\alpha ^m}}}} \right) = - \dfrac{e} {2}
the value of mn\dfrac{m} {n} is

Explanation

Solution

To find the required value of mn\dfrac{m} {n},
Use the property of standard limit lima0(ea1a)=1\mathop {\lim }\limits_{a \to 0} \left( {\dfrac{{{e^a} - 1}} {a}} \right) = 1.
Then simplify the limit with the help of the exponential property aman=amn\dfrac{{{a^m}}} {{{a^n}}} = {a^{m - n}}
and the identity amn=(am)n{a^{mn}} = {\left( {{a^m}} \right)^n}.

Complete step by step solution:
The given limit is, limα0(ecos(αn)eαm)=e2\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{{e^{\cos \left( {{\alpha ^n}} \right)}} - e}} {{{\alpha ^m}}}} \right) = - \dfrac{e} {2}
First we simplify the above expression by taking ee common from the numerator of the right hand side of the above expression.
limα0(ecos(αn)eαm)=e2 elimα0(ecos(αn1)1αm)=e2(1) \begin{gathered} \mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{{e^{\cos \left( {{\alpha ^n}} \right)}} - e}} {{{\alpha ^m}}}} \right) = - \dfrac{e} {2} \\\ e\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{{e^{\cos \left( {{\alpha ^n} - 1} \right)}} - 1}} {{{\alpha ^m}}}} \right) = - \dfrac{e} {2} & & \to \left( 1 \right) \\\ \end{gathered}
Now, for α0\alpha \to 0; the value of the left hand side of the above limit becomes undefined.
So, we can find the standard limit of the left hand side of the above limit.
We know that for a0a \to 0
the value of the limit lima0(ea1a)=1\mathop {\lim }\limits_{a \to 0} \left( {\dfrac{{{e^a} - 1}} {a}} \right) = 1.
Multiply and divide the left hand side of the expression (1) by cosαn1\cos {\alpha ^n} - 1.
elimα0(ecos(αn1)1αm)=e2 elimα0(ecos(αn1)1αm)(cosαn1cosαn1)=e2  e\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{{e^{\cos \left( {{\alpha ^n} - 1} \right)}} - 1}} {{{\alpha ^m}}}} \right) = - \dfrac{e} {2} \\\ e\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{{e^{\cos \left( {{\alpha ^n} - 1} \right)}} - 1}} {{{\alpha ^m}}}} \right)\left( {\dfrac{{\cos {\alpha ^n} - 1}} {{\cos {\alpha ^n} - 1}}} \right) = - \dfrac{e} {2} \\\
Write the above limit as,
elimα0(ecos(αn1)1αm)(cosαn1cosαn1)=e2 elimα0(ecos(αn1)1cosαn1)(cosαn1αm)=e2  e\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{{e^{\cos \left( {{\alpha ^n} - 1} \right)}} - 1}} {{{\alpha ^m}}}} \right)\left( {\dfrac{{\cos {\alpha ^n} - 1}} {{\cos {\alpha ^n} - 1}}} \right) = - \dfrac{e} {2} \\\ e\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{{e^{\cos \left( {{\alpha ^n} - 1} \right)}} - 1}} {{\cos {\alpha ^n} - 1}}} \right)\left( {\dfrac{{\cos {\alpha ^n} - 1}} {{{\alpha ^m}}}} \right) = - \dfrac{e} {2} \\\
Use the standard limit lima0(ea1a)=1\mathop {\lim }\limits_{a \to 0} \left( {\dfrac{{{e^a} - 1}} {a}} \right) = 1
in the above limit.
elimα0(ecos(αn1)1cosαn1)(cosαn1αm)=e2 e(1)limα0(cosαn1αm)=e2 elimα0(cosαn1αm)=e2  e\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{{e^{\cos \left( {{\alpha ^n} - 1} \right)}} - 1}} {{\cos {\alpha ^n} - 1}}} \right)\left( {\dfrac{{\cos {\alpha ^n} - 1}} {{{\alpha ^m}}}} \right) = - \dfrac{e} {2} \\\ e\left( 1 \right)\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{\cos {\alpha ^n} - 1}} {{{\alpha ^m}}}} \right) = - \dfrac{e} {2} \\\ e\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{\cos {\alpha ^n} - 1}} {{{\alpha ^m}}}} \right) = - \dfrac{e} {2} \\\
Multiply each side of the above expression by negative sign.
elimα0(cosαn1αm)=e2 \-(elimα0(cosαn1αm))=(e2) elimα0(1cosαnαm)=e2  e\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{\cos {\alpha ^n} - 1}} {{{\alpha ^m}}}} \right) = - \dfrac{e} {2} \\\ \- \left( {e\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{\cos {\alpha ^n} - 1}} {{{\alpha ^m}}}} \right)} \right) = - \left( { - \dfrac{e} {2}} \right) \\\ e\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{1 - \cos {\alpha ^n}}} {{{\alpha ^m}}}} \right) = \dfrac{e} {2} \\\
Divide each side of the above expression by e.
elimα0(1cosαnαm)e=e2e limα0(1cosαnαm)=12  \dfrac{{e\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{1 - \cos {\alpha ^n}}} {{{\alpha ^m}}}} \right)}} {e} = \dfrac{e} {{2e}} \\\ \mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{1 - \cos {\alpha ^n}}} {{{\alpha ^m}}}} \right) = \dfrac{1} {2} \\\
It is seen that the value of the above limit limα0(1cosαnαm)\mathop {\lim }\limits_{\alpha \to 0} \left( {\dfrac{{1 - \cos {\alpha ^n}}} {{{\alpha ^m}}}} \right)
should be 12\dfrac{1} {2}.
But for α0\alpha \to 0 ; the limit becomes again indefinite.
Now, multiply and divide the left hand side of the above limit by α2n{\alpha ^{2n}}.
limα0(1cosαn)αmα2nα2n=12 limα0(1cosαn)α2nα2nαm=12  \mathop {\lim }\limits_{\alpha \to 0} \dfrac{{\left( {1 - \cos {\alpha ^n}} \right)}} {{{\alpha ^m}}} \cdot \dfrac{{{\alpha ^{2n}}}} {{{\alpha ^{2n}}}} = \dfrac{1} {2} \\\ \mathop {\lim }\limits_{\alpha \to 0} \dfrac{{\left( {1 - \cos {\alpha ^n}} \right)}} {{{\alpha ^{2n}}}} \cdot \dfrac{{{\alpha ^{2n}}}} {{{\alpha ^m}}} = \dfrac{1} {2} \\\
Rewrite the above limit by using the exponential identities aman=amn\dfrac{{{a^m}}} {{{a^n}}} = {a^{m - n}}
and amn=(am)n{a^{mn}} = {\left( {{a^m}} \right)^n}.
limα0(1cosαn)α2nα2nαm=12 limα0(1cosαn)(αn)2α(2nm)=12  \mathop {\lim }\limits_{\alpha \to 0} \dfrac{{\left( {1 - \cos {\alpha ^n}} \right)}} {{{\alpha ^{2n}}}} \cdot \dfrac{{{\alpha ^{2n}}}} {{{\alpha ^m}}} = \dfrac{1} {2} \\\ \mathop {\lim }\limits_{\alpha \to 0} \dfrac{{\left( {1 - \cos {\alpha ^n}} \right)}} {{{{\left( {{\alpha ^n}} \right)}^2}}} \cdot {\alpha ^{\left( {2n - m} \right)}} = \dfrac{1} {2} \\\
It is seen that the value of the left hand side of the above expression will be 12\dfrac{1} {2};
if 2nm=02n - m = 0.
Subtract 2n from each side of the equation 2nm=02n - m = 0.
2nm2n=02n \-m=2n  2n - m - 2n = 0 - 2n \\\ \- m = - 2n \\\
Multiply each side of the above expression with a negative sign.
\-(m)=(2n) m=2n  \- \left( { - m} \right) = - \left( { - 2n} \right) \\\ m = 2n \\\
Divide each side of the above expression by n.
m=2n mn=2nn mn=2  m = 2n \\\ \dfrac{m} {n} = \dfrac{{2n}} {n} \\\ \dfrac{m} {n} = 2 \\\
Hence, the required value of mn\dfrac{m} {n} is 2.

Note: The required value of the term mn\dfrac{m} {n} can be determined by simplifying the given limit to e2\dfrac{e} {2}. Then we can use the half-angle formula of trigonometry that is, cos(α)1=2sin2(α2)\cos \left( \alpha \right) - 1 = 2{\sin^2}\left( {\dfrac{\alpha } {2}} \right)