Question
Question: Let m and n be two positive integers greater than 1. If \(\mathop {\lim }\limits_{\alpha \to 0} \lef...
Let m and n be two positive integers greater than 1. If α→0lim(αmecos(αn)−e)=−2e
the value of nm is
Solution
To find the required value of nm,
Use the property of standard limit a→0lim(aea−1)=1.
Then simplify the limit with the help of the exponential property anam=am−n
and the identity amn=(am)n.
Complete step by step solution:
The given limit is, α→0lim(αmecos(αn)−e)=−2e
First we simplify the above expression by taking e common from the numerator of the right hand side of the above expression.
α→0lim(αmecos(αn)−e)=−2e eα→0lim(αmecos(αn−1)−1)=−2e →(1)
Now, for α→0; the value of the left hand side of the above limit becomes undefined.
So, we can find the standard limit of the left hand side of the above limit.
We know that for a→0
the value of the limit a→0lim(aea−1)=1.
Multiply and divide the left hand side of the expression (1) by cosαn−1.
eα→0lim(αmecos(αn−1)−1)=−2e eα→0lim(αmecos(αn−1)−1)(cosαn−1cosαn−1)=−2e
Write the above limit as,
eα→0lim(αmecos(αn−1)−1)(cosαn−1cosαn−1)=−2e eα→0lim(cosαn−1ecos(αn−1)−1)(αmcosαn−1)=−2e
Use the standard limit a→0lim(aea−1)=1
in the above limit.
eα→0lim(cosαn−1ecos(αn−1)−1)(αmcosαn−1)=−2e e(1)α→0lim(αmcosαn−1)=−2e eα→0lim(αmcosαn−1)=−2e
Multiply each side of the above expression by negative sign.
eα→0lim(αmcosαn−1)=−2e \-(eα→0lim(αmcosαn−1))=−(−2e) eα→0lim(αm1−cosαn)=2e
Divide each side of the above expression by e.
eeα→0lim(αm1−cosαn)=2ee α→0lim(αm1−cosαn)=21
It is seen that the value of the above limit α→0lim(αm1−cosαn)
should be 21.
But for α→0 ; the limit becomes again indefinite.
Now, multiply and divide the left hand side of the above limit by α2n.
α→0limαm(1−cosαn)⋅α2nα2n=21 α→0limα2n(1−cosαn)⋅αmα2n=21
Rewrite the above limit by using the exponential identities anam=am−n
and amn=(am)n.
α→0limα2n(1−cosαn)⋅αmα2n=21 α→0lim(αn)2(1−cosαn)⋅α(2n−m)=21
It is seen that the value of the left hand side of the above expression will be 21;
if 2n−m=0.
Subtract 2n from each side of the equation 2n−m=0.
2n−m−2n=0−2n \-m=−2n
Multiply each side of the above expression with a negative sign.
\-(−m)=−(−2n) m=2n
Divide each side of the above expression by n.
m=2n nm=n2n nm=2
Hence, the required value of nm is 2.
Note: The required value of the term nm can be determined by simplifying the given limit to 2e. Then we can use the half-angle formula of trigonometry that is, cos(α)−1=2sin2(2α)