Solveeit Logo

Question

Mathematics Question on Binomial theorem

Let mm and nn be the coefficients of the seventh and thirteenth terms respectively in the expansion of (13x13+12x23)18.\left( \frac{1}{3}x^{\frac{1}{3}} + \frac{1}{2x^{\frac{2}{3}}} \right)^{18}.Then (nm)13\left(\frac{n}{m}\right)^{\frac{1}{3}}is:

A

49\frac{4}{9}

B

19\frac{1}{9}

C

14\frac{1}{4}

D

94\frac{9}{4}

Answer

94\frac{9}{4}

Explanation

Solution

In the binomial expansion of (a+b)18(a+b)^{18}, the general term is given by Tr+1=(nr)anrbrT_{r+1} = \binom{n}{r} a^{n-r} b^r.
Using the formula for the general term in the binomial expansion, we can find the seventh and thirteenth terms of the given expansion.

Seventh term:
T7=(186)(13x13)12(12x13)6T_7 = \binom{18}{6} \left(\frac{1}{3x^{\frac{1}{3}}}\right)^{12} \left(\frac{1}{2x^{\frac{1}{3}}}\right)^6

m=(186)(13)12(12)6m = \binom{18}{6} \left(\frac{1}{3}\right)^{12} \left(\frac{1}{2}\right)^6

Thirteenth term:
T13=(1812)(13x13)6(12x13)12T_{13} = \binom{18}{12} \left(\frac{1}{3x^{\frac{1}{3}}}\right)^6 \left(\frac{1}{2x^{\frac{1}{3}}}\right)^{12}

n=(1812)(13)6(12)12n = \binom{18}{12} \left(\frac{1}{3}\right)^6 \left(\frac{1}{2}\right)^{12}

Now, we need to find (nm)13\left(\frac{n}{m}\right)^{\frac{1}{3}}.
(nm)13=((1812)(13)6(12)12(186)(13)12(12)6)13\left(\frac{n}{m}\right)^{\frac{1}{3}} = \left(\frac{\binom{18}{12} \left(\frac{1}{3}\right)^6 \left(\frac{1}{2}\right)^{12}}{\binom{18}{6} \left(\frac{1}{3}\right)^{12} \left(\frac{1}{2}\right)^6}\right)^{\frac{1}{3}}

Simplifying the expression, we get:
(nm)13=((1812)(186)×(13)6×(12)6)13\left(\frac{n}{m}\right)^{\frac{1}{3}} = \left(\frac{\binom{18}{12}}{\binom{18}{6}} \times \left(\frac{1}{3}\right)^{-6} \times \left(\frac{1}{2}\right)^6\right)^{\frac{1}{3}}

Using the property of binomial coefficients (nr)=(nnr)\binom{n}{r} = \binom{n}{n-r}, we can simplify further:
(nm)13=((186)(186)×(13)6×(12)6)13=(136×126)13=(36×26)13=(3222)=94\left(\frac{n}{m}\right)^{\frac{1}{3}} = \left(\frac{\binom{18}{6}}{\binom{18}{6}} \times \left(\frac{1}{3}\right)^{-6} \times \left(\frac{1}{2}\right)^6\right)^{\frac{1}{3}} = \left(\frac{1}{3^{-6}} \times \frac{1}{2^6}\right)^{\frac{1}{3}} = \left(3^6 \times 2^{-6}\right)^{\frac{1}{3}} = \left(\frac{3^2}{2^2}\right) = \frac{9}{4}

Therefore, the correct answer is (4).