Question
Mathematics Question on Binomial theorem
Let m and n be the coefficients of the seventh and thirteenth terms respectively in the expansion of (31x31+2x321)18.Then (mn)31is:
94
91
41
49
49
Solution
In the binomial expansion of (a+b)18, the general term is given by Tr+1=(rn)an−rbr.
Using the formula for the general term in the binomial expansion, we can find the seventh and thirteenth terms of the given expansion.
Seventh term:
T7=(618)(3x311)12(2x311)6
m=(618)(31)12(21)6
Thirteenth term:
T13=(1218)(3x311)6(2x311)12
n=(1218)(31)6(21)12
Now, we need to find (mn)31.
(mn)31=((618)(31)12(21)6(1218)(31)6(21)12)31
Simplifying the expression, we get:
(mn)31=((618)(1218)×(31)−6×(21)6)31
Using the property of binomial coefficients (rn)=(n−rn), we can simplify further:
(mn)31=((618)(618)×(31)−6×(21)6)31=(3−61×261)31=(36×2−6)31=(2232)=49
Therefore, the correct answer is (4).