Question
Mathematics Question on Application of derivatives
Let M and m respectively denote the maximum and the minimum values of [f(θ)]2, where f(θ)=a2cos2θ+b2sin2θ +a2sin2θ+b2cos2θ. Then M−m=
A
a2+b2
B
(a−b)2
C
a2b2
D
(a+b)2
Answer
(a−b)2
Explanation
Solution
If f(θ)=a2cos2θ+b2sin2θ+a2sin2θ+b2cos2θ ∴[f(θ)]2=a2cos2θ+b2sin2θ+a2sin2θ+b2cos2θ +2(a2cos2θ+b2sin2θ)(a2sin2θ+b2cos2θ) ∵[f(θ)]2 will be maximum, if sin2θ=cos2θ=21 and will be minimum, if either sin2θ=0 or cos2θ=0 ∴M=(a2+b2)+2(2a2+2b2)2 =2(a2+b2) and m=(a2+b2)+2a2b2 =a2+b2+2ab ∴M−m=2(a2+b2)−[a2+b2+2ab] =a2+b2−2ab=(a−b)2