Solveeit Logo

Question

Mathematics Question on Application of derivatives

Let MM and mm respectively denote the maximum and the minimum values of [f(θ)]2[f(\theta)]^{2}, where f(θ)=a2cos2θ+b2sin2θf(\theta)=\sqrt{a^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta} +a2sin2θ+b2cos2θ+\sqrt{a^{2} \sin ^{2} \theta+b^{2} \cos ^{2} \theta}. Then Mm=M-m=

A

a2+b2a^2 + b^2

B

(ab)2(a -b)^2

C

a2b2a^2 b^2

D

(a+b)2(a + b)^2

Answer

(ab)2(a -b)^2

Explanation

Solution

If f(θ)=a2cos2θ+b2sin2θ+a2sin2θ+b2cos2θf(\theta)=\sqrt{a^{2} \cos ^{2} \theta+ b^{2} \sin ^{2} \theta}+\sqrt{a^{2} \sin ^{2} \theta +b^{2} \cos ^{2} \theta} [f(θ)]2=a2cos2θ+b2sin2θ+a2sin2θ+b2cos2θ\therefore[f(\theta)]^{2}=a^{2} \cos ^{2} \theta +b^{2} \sin ^{2} \theta +a^{2} \sin ^{2} \theta +b^{2} \cos ^{2} \theta +2(a2cos2θ+b2sin2θ)(a2sin2θ+b2cos2θ)+2 \sqrt{\left(a^{2} \cos ^{2} \theta +b^{2} \sin ^{2} \theta\right)\left(a^{2} \sin ^{2} \theta +b^{2} \cos ^{2} \theta\right)} [f(θ)]2\because[f(\theta)]^{2} will be maximum, if sin2θ=cos2θ=12\sin ^{2} \theta=\cos ^{2} \theta=\frac{1}{2} and will be minimum, if either sin2θ=0\sin ^{2} \theta=0 or cos2θ=0\cos ^{2} \theta=0 M=(a2+b2)+2(a22+b22)2\therefore M=\left(a^{2}+b^{2}\right)+2 \sqrt{\left(\frac{a^{2}}{2}+\frac{b^{2}}{2}\right)^{2}} =2(a2+b2)=2\left(a^{2}+b^{2}\right) and m=(a2+b2)+2a2b2m=\left(a^{2}+b^{2}\right)+2 \sqrt{a^{2} b^{2}} =a2+b2+2ab=a^{2}+b^{2}+2 a b Mm=2(a2+b2)[a2+b2+2ab]\therefore M-m=2\left(a^{2}+b^{2}\right)-\left[a^{2}+b^{2}+2 a b\right] =a2+b22ab=(ab)2=a^{2}+b^{2}-2 a b=(a-b)^{2}