Solveeit Logo

Question

Mathematics Question on Matrices

Let M=(aij), i,j∈{1,2,3}, be the 3×3 matrix such that aij=1 if j+1 is divisible by i,otherwise aij=0. Then which of the following statements is(are) true?

A

M is invertible

B

There exists a nonzero column matrix(a1\a2\a3)\begin{pmatrix}a_1\\\a_2\\\a_3\end{pmatrix} such that M(a1\a2\a3)\begin{pmatrix}a_1\\\a_2\\\a_3\end{pmatrix}=(a1a2a3)\begin{pmatrix}-a_1\\\\-a_2\\\\-a_3\end{pmatrix}

C

The set {xR3:MX=0{x\in R^3:MX=0}} \neq 0, where 0=(0\0\0)\begin{pmatrix}0\\\0\\\0\end{pmatrix}

D

The matrix ( M-2I) is invertible, where I is the 3×3 identity matrix

Answer

There exists a nonzero column matrix(a1\a2\a3)\begin{pmatrix}a_1\\\a_2\\\a_3\end{pmatrix} such that M(a1\a2\a3)\begin{pmatrix}a_1\\\a_2\\\a_3\end{pmatrix}=(a1a2a3)\begin{pmatrix}-a_1\\\\-a_2\\\\-a_3\end{pmatrix}

Explanation

Solution

Given :
M = (aij), i, j ∈ {1, 2, 3},
aij = 1 if j + 1 is divisible by i, otherwise aij = 0
M=[111 101 010]M=\begin{bmatrix} 1 & 1 & 1 \\\ 1 & 0 & 1 \\\ 0 & 1 & 0 \end{bmatrix}
|M| = 1(-1) - 1(-1)
= -1 + 1 = 0
So, M is not invertible
[111 101 010][a1 a2 a3]=[a1 a2 a3]\begin{bmatrix} 1 & 1 & 1 \\\ 1 & 0 & 1 \\\ 0 & 1 & 0 \end{bmatrix}\begin{bmatrix} a_{1} \\\ a_{2} \\\ a_{3} \end{bmatrix}=\begin{bmatrix} -a_{1} \\\ -a_{2} \\\ -a_{3} \end{bmatrix}
[a1+a2+a3 a1+a3 a2]=[a1 a2 a3]\begin{bmatrix} a_1+ a_2 +a_3 \\\ a_1+a_3 \\\ a_2 \end{bmatrix}=\begin{bmatrix} -a_{1} \\\ -a_{2} \\\ -a_{3} \end{bmatrix}

There exists an infinite number of possible column matrices.
[111 101 010][x y z]=[0 0 0]\begin{bmatrix} 1 & 1 & 1 \\\ 1 & 0 & 1 \\\ 0 & 1 & 0 \end{bmatrix}\begin{bmatrix} x \\\ y \\\ z \end{bmatrix}=\begin{bmatrix} 0 \\\ 0 \\\ 0 \end{bmatrix}
x + y + z = 0
⇒ x + z = 0
y = 0
So, this is possible only.
M2I=[111 121 012]|M-2I|=\begin{bmatrix} -1 & 1 & 1 \\\ 1 & -2 & 1 \\\ 0 & 1 & -2 \end{bmatrix}
=1(3)1(21)=3+3=0=-1(3)-1(-2-1)=-3+3=0
So, the correct options are (B) and (C).