Solveeit Logo

Question

Question: Let M = [$a_{uv}$]$_{nxn}$ be a square matrix of order n where $a_{uv}$ = sin ($\theta_u$-$\theta_v$...

Let M = [auva_{uv}]nxn_{nxn} be a square matrix of order n where auva_{uv} = sin (θu\theta_u-θv\theta_v) + i cos(θu\theta_u-θv\theta_v), then M is equal to (where M\overline{M} and MTM^T are conjugate of M and transpose of M respectively.) Q.1

A

M\overline{M}

B

-M\overline{M}

C

MT\overline{M}^T

D

-MT\overline{M}^T

Answer

-MT\overline{M}^T

Explanation

Solution

Let the matrix M be given by M=[auv]nxnM = [a_{uv}]_{nxn}, where auv=sin(θuθv)+icos(θuθv)a_{uv} = \sin(\theta_u - \theta_v) + i \cos(\theta_u - \theta_v).

We can rewrite the element auva_{uv} using the identity cosxisinx=eix\cos x - i \sin x = e^{-ix}.

auv=sin(θuθv)+icos(θuθv)a_{uv} = \sin(\theta_u - \theta_v) + i \cos(\theta_u - \theta_v)

Factor out ii:

auv=i(sin(θuθv)i+cos(θuθv))a_{uv} = i \left( \frac{\sin(\theta_u - \theta_v)}{i} + \cos(\theta_u - \theta_v) \right)

Since 1i=i\frac{1}{i} = -i:

auv=i(isin(θuθv)+cos(θuθv))a_{uv} = i \left( -i \sin(\theta_u - \theta_v) + \cos(\theta_u - \theta_v) \right)

auv=i(cos(θuθv)isin(θuθv))a_{uv} = i \left( \cos(\theta_u - \theta_v) - i \sin(\theta_u - \theta_v) \right)

Using Euler's formula eix=cosxisinxe^{-ix} = \cos x - i \sin x:

auv=iei(θuθv)a_{uv} = i e^{-i(\theta_u - \theta_v)}

auv=ieiθueiθva_{uv} = i e^{-i\theta_u} e^{i\theta_v}.

Now let's consider the transpose of M, denoted by MTM^T. The element (MT)uv(M^T)_{uv} is avua_{vu}.

avu=sin(θvθu)+icos(θvθu)a_{vu} = \sin(\theta_v - \theta_u) + i \cos(\theta_v - \theta_u).

Using the properties sin(x)=sinx\sin(-x) = -\sin x and cos(x)=cosx\cos(-x) = \cos x:

avu=sin((θuθv))+icos((θuθv))a_{vu} = \sin(-(\theta_u - \theta_v)) + i \cos(-(\theta_u - \theta_v))

avu=sin(θuθv)+icos(θuθv)a_{vu} = -\sin(\theta_u - \theta_v) + i \cos(\theta_u - \theta_v).

Next, consider the complex conjugate of MTM^T, denoted by MT\overline{M}^T. The element (MT)uv(\overline{M}^T)_{uv} is the complex conjugate of (MT)uv(M^T)_{uv}, which is avu\overline{a_{vu}}.

avu=sin(θuθv)+icos(θuθv)\overline{a_{vu}} = \overline{-\sin(\theta_u - \theta_v) + i \cos(\theta_u - \theta_v)}

avu=sin(θuθv)icos(θuθv)\overline{a_{vu}} = -\sin(\theta_u - \theta_v) - i \cos(\theta_u - \theta_v).

Finally, consider the matrix MT-\overline{M}^T. The element (MT)uv(-\overline{M}^T)_{uv} is (MT)uv-(\overline{M}^T)_{uv}, which is avu-\overline{a_{vu}}.

(MT)uv=(sin(θuθv)icos(θuθv))(-\overline{M}^T)_{uv} = -(-\sin(\theta_u - \theta_v) - i \cos(\theta_u - \theta_v))

(MT)uv=sin(θuθv)+icos(θuθv)(-\overline{M}^T)_{uv} = \sin(\theta_u - \theta_v) + i \cos(\theta_u - \theta_v).

This result is exactly equal to the element auva_{uv}.

So, auv=(MT)uva_{uv} = (-\overline{M}^T)_{uv} for all u,vu, v.

Therefore, the matrix M is equal to MT-\overline{M}^T.

M=MTM = -\overline{M}^T.

This means M is a skew-Hermitian matrix.