Question
Mathematics Question on Fundamental Theorem of Calculus
Let limn→∞(n4+1n−(n2+1)n4+12n+n4+16n−(n2+4)n4+168n+…+n4+n4n−(n2+n2)n4+n42n⋅n2) be kπ, using only the principal values of the inverse trigonometric functions. Then k2 is equal to ______.
The given sum is:
∑r=1∞(n4+r4n−(n2+r2)n4+r42nr2)
Substitute r=nr and simplify:
∑r=1∞(n1⋅1+(nr)41−(1+(nr)2)1+(nr)42(nr)2)
In the limit as n→∞, this becomes the integral:
∫011+x4dx−∫01(1+x2)1+x42x2dx
Simplify:
∫01(1+x2)1+x41−x2dx
Substitute x+x1=t, where 1−x21dx=dt. The integral becomes:
∫2∞tt2−2dt
Now substitute t2−2=α2, so tdt=αdα. The integral becomes:
∫0∞(α2+2)ααdα=∫2∞α2+2dα
This simplifies further using the inverse tangent:
∫2∞α2+2dα=21[tan−12α]2∞
At the limits:
21(tan−1∞−tan−11)=21(2π−4π)
Simplify:
=42π
We are given kπ, so:
K=42
Thus:
K2=32
Final Answer is 32
Solution
The given sum is:
∑r=1∞(n4+r4n−(n2+r2)n4+r42nr2)
Substitute r=nr and simplify:
∑r=1∞(n1⋅1+(nr)41−(1+(nr)2)1+(nr)42(nr)2)
In the limit as n→∞, this becomes the integral:
∫011+x4dx−∫01(1+x2)1+x42x2dx
Simplify:
∫01(1+x2)1+x41−x2dx
Substitute x+x1=t, where 1−x21dx=dt. The integral becomes:
∫2∞tt2−2dt
Now substitute t2−2=α2, so tdt=αdα. The integral becomes:
∫0∞(α2+2)ααdα=∫2∞α2+2dα
This simplifies further using the inverse tangent:
∫2∞α2+2dα=21[tan−12α]2∞
At the limits:
21(tan−1∞−tan−11)=21(2π−4π)
Simplify:
=42π
We are given kπ, so:
K=42
Thus:
K2=32
Final Answer is 32