Solveeit Logo

Question

Mathematics Question on Fundamental Theorem of Calculus

Let limn(nn4+12n(n2+1)n4+1+nn4+168n(n2+4)n4+16++nn4+n42nn2(n2+n2)n4+n4)\lim_{n \to \infty} \left( \frac{n}{\sqrt{n^4 + 1}} - \frac{2n}{\left(n^2 + 1\right)\sqrt{n^4 + 1}} + \frac{n}{\sqrt{n^4 + 16}} - \frac{8n}{\left(n^2 + 4\right)\sqrt{n^4 + 16}} + \ldots + \frac{n}{\sqrt{n^4 + n^4}} - \frac{2n \cdot n^2}{\left(n^2 + n^2\right)\sqrt{n^4 + n^4}} \right) be πk,\frac{\pi}{k}, using only the principal values of the inverse trigonometric functions. Then k2k^2 is equal to ______.

Answer

The given sum is:

r=1(nn4+r42nr2(n2+r2)n4+r4)\sum_{r=1}^{\infty} \left(\frac{n}{\sqrt{n^4 + r^4}} - \frac{2nr^2}{(n^2 + r^2)\sqrt{n^4 + r^4}}\right)

Substitute r=rnr = \frac{r}{n} and simplify:

r=1(1n11+(rn)42(rn)2(1+(rn)2)1+(rn)4)\sum_{r=1}^{\infty} \left(\frac{1}{n} \cdot \frac{1}{\sqrt{1 + \left(\frac{r}{n}\right)^4}} - \frac{2\left(\frac{r}{n}\right)^2}{\left(1 + \left(\frac{r}{n}\right)^2\right)\sqrt{1 + \left(\frac{r}{n}\right)^4}}\right)

In the limit as nn \to \infty, this becomes the integral:

01dx1+x4012x2dx(1+x2)1+x4\int_0^1 \frac{dx}{\sqrt{1 + x^4}} - \int_0^1 \frac{2x^2dx}{(1 + x^2)\sqrt{1 + x^4}}

Simplify:

011x2(1+x2)1+x4dx\int_0^1 \frac{1 - x^2}{(1 + x^2)\sqrt{1 + x^4}} dx

Substitute x+1x=tx + \frac{1}{x} = t, where 11x2dx=dt1 - \frac{1}{x^2} dx = dt. The integral becomes:

2dttt22\int_{\sqrt{2}}^{\infty} \frac{dt}{t\sqrt{t^2 - 2}}

Now substitute t22=α2t^2 - 2 = \alpha^2, so tdt=αdαtdt = \alpha d\alpha. The integral becomes:

0αdα(α2+2)α=2dαα2+2\int_0^{\infty} \frac{\alpha d\alpha}{(\alpha^2 + 2)\alpha} = \int_{\sqrt{2}}^{\infty} \frac{d\alpha}{\alpha^2 + 2}

This simplifies further using the inverse tangent:

2dαα2+2=12[tan1α2]2\int_{\sqrt{2}}^{\infty} \frac{d\alpha}{\alpha^2 + 2} = \frac{1}{\sqrt{2}} \left[\tan^{-1} \frac{\alpha}{\sqrt{2}}\right]_{\sqrt{2}}^{\infty}

At the limits:

12(tan1tan11)=12(π2π4)\frac{1}{\sqrt{2}} \left(\tan^{-1} \infty - \tan^{-1} 1\right) = \frac{1}{\sqrt{2}} \left(\frac{\pi}{2} - \frac{\pi}{4}\right)

Simplify:

=π42= \frac{\pi}{4\sqrt{2}}

We are given πk\frac{\pi}{k}, so:

K=42K = 4\sqrt{2}

Thus:

K2=32K^2 = 32

Final Answer is 32

Explanation

Solution

The given sum is:

r=1(nn4+r42nr2(n2+r2)n4+r4)\sum_{r=1}^{\infty} \left(\frac{n}{\sqrt{n^4 + r^4}} - \frac{2nr^2}{(n^2 + r^2)\sqrt{n^4 + r^4}}\right)

Substitute r=rnr = \frac{r}{n} and simplify:

r=1(1n11+(rn)42(rn)2(1+(rn)2)1+(rn)4)\sum_{r=1}^{\infty} \left(\frac{1}{n} \cdot \frac{1}{\sqrt{1 + \left(\frac{r}{n}\right)^4}} - \frac{2\left(\frac{r}{n}\right)^2}{\left(1 + \left(\frac{r}{n}\right)^2\right)\sqrt{1 + \left(\frac{r}{n}\right)^4}}\right)

In the limit as nn \to \infty, this becomes the integral:

01dx1+x4012x2dx(1+x2)1+x4\int_0^1 \frac{dx}{\sqrt{1 + x^4}} - \int_0^1 \frac{2x^2dx}{(1 + x^2)\sqrt{1 + x^4}}

Simplify:

011x2(1+x2)1+x4dx\int_0^1 \frac{1 - x^2}{(1 + x^2)\sqrt{1 + x^4}} dx

Substitute x+1x=tx + \frac{1}{x} = t, where 11x2dx=dt1 - \frac{1}{x^2} dx = dt. The integral becomes:

2dttt22\int_{\sqrt{2}}^{\infty} \frac{dt}{t\sqrt{t^2 - 2}}

Now substitute t22=α2t^2 - 2 = \alpha^2, so tdt=αdαtdt = \alpha d\alpha. The integral becomes:

0αdα(α2+2)α=2dαα2+2\int_0^{\infty} \frac{\alpha d\alpha}{(\alpha^2 + 2)\alpha} = \int_{\sqrt{2}}^{\infty} \frac{d\alpha}{\alpha^2 + 2}

This simplifies further using the inverse tangent:

2dαα2+2=12[tan1α2]2\int_{\sqrt{2}}^{\infty} \frac{d\alpha}{\alpha^2 + 2} = \frac{1}{\sqrt{2}} \left[\tan^{-1} \frac{\alpha}{\sqrt{2}}\right]_{\sqrt{2}}^{\infty}

At the limits:

12(tan1tan11)=12(π2π4)\frac{1}{\sqrt{2}} \left(\tan^{-1} \infty - \tan^{-1} 1\right) = \frac{1}{\sqrt{2}} \left(\frac{\pi}{2} - \frac{\pi}{4}\right)

Simplify:

=π42= \frac{\pi}{4\sqrt{2}}

We are given πk\frac{\pi}{k}, so:

K=42K = 4\sqrt{2}

Thus:

K2=32K^2 = 32

Final Answer is 32