Question
Question: Let \[\left[ x \right]\]be the greatest integer less than or equal to x. Then, at which of the follo...
Let [x]be the greatest integer less than or equal to x. Then, at which of the following point(s), the functionf(x)=xcos(π(x+[x]))is discontinuous?
(A). x=2
(B). x=0
(C). x=1
(D). x=−1
Solution
To solve the question we need to check the continuity of function at each point given in the options. To check the discontinuity of the function f(x) at first we have to determine the LHL (Left Hand Limit) and RHL (Right Hand limit) of the particular points. When the point at which the LHL and RHL are equal, then the function f(x) is continuous at that particular point.
Complete step-by-step answer :
Now we will find out the LHL and RHL of the points given in the options.
We know for a point x=athe LHL and RHL are given by
LHL=x→a−limf(x)=h→0limf(a−h) ………………………………………… (1)
And
RHL=x→a+limf(x)=h→0limf(a+h) ……………………….…………. (2)
Given function isf(x)=xcos(π(x+[x])) ……………………………………… (3)
Applying this formula let’s find out the LHL and RHL atx=2.
LHL = \mathop {\lim }\limits_{x \to {2^ - }} x\cos \left( {\pi \left( {x + 1} \right)} \right) \\
= \mathop {\lim }\limits_{h \to 0} (2 - h)\cos \left( {\pi \left( {2 - h + 1} \right)} \right) \\
= 2\cos 3\pi \\
= - 2 \\
RHL = \mathop {\lim }\limits_{x \to {2^ + }} f(x) \\
= \mathop {\lim }\limits_{x \to {2^ + }} x\cos \left( {\pi \left( {x + \left[ x \right]} \right)} \right) \\
RHL = \mathop {\lim }\limits_{x \to {2^ + }} x\cos \left( {\pi \left( {x + 2} \right)} \right) \\
= \mathop {\lim }\limits_{h \to 0} (2 - h)\cos \left( {\pi \left( {2 - h + 2} \right)} \right) \\
= 2\cos 4\pi \\
= 2 \\
LHL = \mathop {\lim }\limits_{x \to {0^ - }} f(x) \\
= \mathop {\lim }\limits_{x \to {0^ - }} x\cos \left( {\pi \left( {x + \left[ x \right]} \right)} \right) \\
\\
LHL = \mathop {\lim }\limits_{x \to {0^ - }} x\cos \left( {\pi \left( {x - 1} \right)} \right) \\
= \mathop {\lim }\limits_{h \to 0} (0 - h)\cos \left( {\pi \left( {0 - h - 1} \right)} \right) \\
= 0 \times \cos \left( { - \pi } \right) \\
= 0 \\
RHL = \mathop {\lim }\limits_{x \to {0^ + }} f(x) \\
= \mathop {\lim }\limits_{x \to {0^ + }} x\cos \left( {\pi \left( {x + \left[ x \right]} \right)} \right) \\
RHL = \mathop {\lim }\limits_{x \to {0^ + }} x\cos \left( {\pi \left( {x + 0} \right)} \right) \\
= \mathop {\lim }\limits_{h \to 0} (0 - h)\cos \left( {\pi \left( {0 - h} \right)} \right) \\
= 0 \times \cos 0 \\
= 0 \\
LHL = \mathop {\lim }\limits_{x \to {1^ - }} f(x) \\
= \mathop {\lim }\limits_{x \to {1^ - }} x\cos \left( {\pi \left( {x + \left[ x \right]} \right)} \right) \\
LHL = \mathop {\lim }\limits_{x \to {1^ - }} x\cos \left( {\pi \left( {x + 0} \right)} \right) \\
= \mathop {\lim }\limits_{h \to 0} (1 - h)\cos \left( {\pi \left( {1 - h} \right)} \right) \\
= 1 \times \cos \pi \\
= \cos \pi \\
= - 1 \\
RHL = \mathop {\lim }\limits_{x \to {1^ + }} f(x) \\
= \mathop {\lim }\limits_{x \to {1^ + }} x\cos \left( {\pi \left( {x + \left[ x \right]} \right)} \right) \\
RHL = \mathop {\lim }\limits_{x \to {1^ + }} x\cos \left( {\pi \left( {x + 1} \right)} \right) \\
= \mathop {\lim }\limits_{h \to 0} (1 - h)\cos \left( {\pi \left( {1 - h + 1} \right)} \right) \\
= 1 \times \cos 2\pi \\
= 1 \\
LHL = \mathop {\lim }\limits_{x \to - {1^ - }} f(x) \\
= \mathop {\lim }\limits_{x \to - {1^ - }} x\cos \left( {\pi \left( {x + \left[ x \right]} \right)} \right) \\
LHL = \mathop {\lim }\limits_{x \to - {1^ - }} x\cos \left( {\pi \left( {x - 2} \right)} \right) \\
= \mathop {\lim }\limits_{h \to 0} ( - 1 - h)\cos \left( {\pi \left( { - 1 - h - 2} \right)} \right) \\
= - 1 \times \cos ( - 3\pi ) \\
= - \cos 3\pi \\
= 1 \\
RHL = \mathop {\lim }\limits_{x \to - {1^ + }} f(x) \\
= \mathop {\lim }\limits_{x \to - {1^ + }} x\cos \left( {\pi \left( {x + \left[ x \right]} \right)} \right) \\
RHL = \mathop {\lim }\limits_{x \to - {1^ + }} x\cos \left( {\pi \left( {x - 1} \right)} \right) \\
= \mathop {\lim }\limits_{h \to 0} ( - 1 - h)\cos \left( {\pi \left( { - 1 - h - 1} \right)} \right) \\
= - 1 \times \cos ( - 2\pi ) \\
= - 1 \\