Solveeit Logo

Question

Mathematics Question on Straight lines

Let (x1,y1),(x2,y2),(x3,y3)\left(x_{1} , y_{1}\right),\left(x_{2} , y_{2}\right),\left(x_{3} , y_{3}\right) and (x4,y4)\left(x_{4} , y_{4}\right) are four points which are at unit distance from the lines 3x4y+1=03x-4y+1=0 and 8x+6y+1=0,8x+6y+1=0, then the value of i=14xii=14yi\frac{\displaystyle \sum _{i = 1}^{4} x_{i}}{\displaystyle \sum _{i = 1}^{4} y_{i}} is equal to

A

22

B

2-2

C

11

D

1-1

Answer

2-2

Explanation

Solution

Point of intersection of lines 3x4y+1=03x-4y+1=0 and 8x+6y+1=08x+6y+1=0 is (15,110)\left(\frac{- 1}{5} , \frac{1}{10}\right) Now, i=14xi=4(15)=45\displaystyle \sum _{i = 1}^{4} x_{i}=4\left(- \frac{1}{5}\right)=-\frac{4}{5} and i=14yi=4(110)=25\displaystyle \sum _{i = 1}^{4}y_{i}=4\left(\frac{1}{10}\right)=\frac{2}{5} i=14xii=14yi=4525=2\Rightarrow \frac{\displaystyle \sum _{i = 1}^{4} x_{i}}{\displaystyle \sum _{i = 1}^{4} y_{i}}=\frac{- \frac{4}{5}}{\frac{2}{5}}=-2