Solveeit Logo

Question

Question: Let \(\left| \frac{z_{1} - z_{2}}{1 - z_{1}{\bar{z}}_{2}} \right| =\)be a purely imaginary number su...

Let z1z21z1zˉ2=\left| \frac{z_{1} - z_{2}}{1 - z_{1}{\bar{z}}_{2}} \right| =be a purely imaginary number such thatz1z_{1}. Then z2z_{2} is equal to.

A

z1+z2=z1+z2,|z_{1} + z_{2}| = |z_{1}| + |z_{2}|,

B

(z1)(z_{1}) -

C

0

D

(z2)(z_{2})

Answer

(z1)(z_{1}) -

Explanation

Solution

Let z2=r1[cos(θ1)isin(θ1)]=r1(cosθ1isinθ1)z_{2} = r_{1}\lbrack\cos( - \theta_{1}) - i\sin( - \theta_{1})\rbrack = r_{1}(\cos\theta_{1} - i\sin\theta_{1}), where zˉ1=z2{\bar{z}}_{1} = z_{2}. Then z1+z2=z1+z2|z_{1} + z_{2}| = |z_{1}| + |z_{2}|lies on +ve y-axis and so z1+z22=z12+z22+2z1z2|z_{1} + z_{2}|^{2} = |z_{1}|^{2} + |z_{2}|^{2} + 2|z_{1}||z_{2}|.