Solveeit Logo

Question

Mathematics Question on Trigonometry

Let cosθcos(60θ)cos(60θ)18,θ[0,2π]\left| \cos \theta \cos (60^\circ - \theta) \cos (60^\circ - \theta) \right| \leq \frac{1}{8}, \quad \theta \in [0, 2\pi] Then, the sum of all θ[0,2π]\theta \in [0, 2\pi], where cos3θ\cos 3\theta attains its maximum value, is:

A

9π9\pi

B

18π18\pi

C

6π6\pi

D

15π15\pi

Answer

6π6\pi

Explanation

Solution

Step 1: Simplify the inequality Using the trigonometric identity:

cosθcos(60θ)cos(60+θ)=14cos3θ,\cos \theta \cos (60^\circ - \theta) \cos (60^\circ + \theta) = \frac{1}{4} \cos 3\theta, the inequality reduces to: 14cos3θ18.\left| \frac{1}{4} \cos 3\theta \right| \leq \frac{1}{8}.

Simplify further: cos3θ12.|\cos 3\theta| \leq \frac{1}{2}.

Step 2: Range of cos3θ\cos 3\theta The inequality becomes: 12cos3θ12.-\frac{1}{2} \leq \cos 3\theta \leq \frac{1}{2}. The maximum value of cos3θ\cos 3\theta within this range is 12\frac{1}{2}. At this value: cos3θ=12.\cos 3\theta = \frac{1}{2}.

Step 3: Solve for 3θ3\theta The general solution for cos3θ=12\cos 3\theta = \frac{1}{2} is: 3θ=2nπ±π3,nZ.3\theta = 2n\pi \pm \frac{\pi}{3}, \quad n \in \mathbb{Z}. Divide through by 3 to solve for θ\theta: θ=2nπ3±π9.\theta = \frac{2n\pi}{3} \pm \frac{\pi}{9}.

Step 4: Possible values of θ\theta in [0,2π][0, 2\pi] For θ[0,2π]\theta \in [0, 2\pi], substitute n=0,1,2,n = 0, 1, 2, \dots until all possible values of θ\theta are found.

  • For n=0n = 0:
  • For n=1n = 1:
  • For n=2n = 2:
  • For n=3n = 3:

Thus, the possible values of θ\theta are: θ=π9,5π9,7π9,11π9,13π9,17π9.\theta = \frac{\pi}{9}, \frac{5\pi}{9}, \frac{7\pi}{9}, \frac{11\pi}{9}, \frac{13\pi}{9}, \frac{17\pi}{9}.

Step 5: Sum of all θ\theta The sum of these values is: Sum=π9+5π9+7π9+11π9+13π9+17π9.\text{Sum} = \frac{\pi}{9} + \frac{5\pi}{9} + \frac{7\pi}{9} + \frac{11\pi}{9} + \frac{13\pi}{9} + \frac{17\pi}{9}. Sum=π(1+5+7+11+13+17)9=π549=6π.\text{Sum} = \frac{\pi (1 + 5 + 7 + 11 + 13 + 17)}{9} = \frac{\pi \cdot 54}{9} = 6\pi.

Final Answer: Option (3).