Solveeit Logo

Question

Real Analysis Question on Sequences and Series

Let \left\\{a_n\right\\}^{\infin}_{n=1} be a sequence of real numbers.
Then, which of the following statements is/are always TRUE ?

A

If n=1an\sum\limits_{n=1}^{\infin}a_nconverges absolutely, then n=1an2\sum\limits_{n=1}^{\infin}a_n^2 converges absolutely

B

If n=1an\sum\limits_{n=1}^{\infin}a_nconverges absolutely, then n=1an3\sum\limits_{n=1}^{\infin}a_n^3 converges absolutely

C

If n=1an\sum\limits_{n=1}^{\infin}a_n converges, then n=1an2\sum\limits_{n=1}^{\infin}a^2_n converges

D

If n=1an\sum\limits_{n=1}^{\infin}a_n converges, then n=1an3\sum\limits_{n=1}^{\infin}a^3_n converges

Answer

If n=1an\sum\limits_{n=1}^{\infin}a_nconverges absolutely, then n=1an2\sum\limits_{n=1}^{\infin}a_n^2 converges absolutely

Explanation

Solution

The correct option is (A) : If n=1an\sum\limits_{n=1}^{\infin}a_nconverges absolutely, then n=1an2\sum\limits_{n=1}^{\infin}a_n^2 converges absolutely and (B) : If n=1an\sum\limits_{n=1}^{\infin}a_nconverges absolutely, then n=1an3\sum\limits_{n=1}^{\infin}a_n^3 converges absolutely