Solveeit Logo

Question

Mathematics Question on Matrices

Let λ,μR\lambda, \mu \in \mathbb{R}. If the system of equations
3x+5y+λz=33x + 5y + \lambda z = 3
7x+11y9z=27x + 11y - 9z = 2
97x+155y189z=μ97x + 155y - 189z = \mu
has infinitely many solutions, then μ+2λ\mu + 2\lambda is equal to:

A

25

B

24

C

27

D

22

Answer

25

Explanation

Solution

Step 1: Condition for infinitely many solutions For the system of equations to have infinitely many solutions, the three equations must be linearly dependent.

Step 2: Manipulate the equations The given equations are:

3x+5y+λz=3,(1) 3x + 5y + \lambda z = 3, \cdots \cdots(1) 7x+11y9z=2,(2)7x + 11y - 9z = 2, \cdots \cdots(2) 97x+155y189z=μ.(3)97x + 155y - 189z = \mu. \cdots \cdots(3)

Multiply equation (1) by 31:

93x+155y+31λz=93.(4) 93x + 155y + 31\lambda z = 93. \cdots \cdots(4)

Subtract equation (4) from equation (3):

(97x+155y189z)(93x+155y+31λz)=μ93.(97x + 155y - 189z) - (93x + 155y + 31\lambda z) = \mu - 93. 4x(31λ+189)z=μ93.(5)4x - (31\lambda + 189)z = \mu - 93. \cdots \cdots(5)

Step 3: Express further conditions Now consider equations (2) and (5). Multiply equation (2) by 9:

63x+99y81z=18.(6)63x + 99y - 81z = 18. \cdots \cdots({6})

Multiply equation (5) by 9 and subtract from equation (6):

(63x+99y81z)9(4x(31λ+189)z)=189(μ93).(63x + 99y - 81z) - 9(4x - (31\lambda + 189)z) = 18 - 9(\mu - 93). 63x+99y81z36x+9(31λ+189)z=189μ+837.63x + 99y - 81z - 36x + 9(31\lambda + 189)z = 18 - 9\mu + 837. 36x+1368z=2(31011μ).(7)36x + 1368z = 2(310 - 11\mu). \cdots \cdots({7})

Step 4: Solve for λ and μ Expand equation (7):

279λ+3069z=145731μ.(8)279\lambda + 3069z = 1457 - 31\mu. \cdots \cdots({8})

For infinitely many solutions:

279λ+3069=0λ=3069279=34131.279\lambda + 3069 = 0 \quad \Rightarrow \quad \lambda = -\frac{3069}{279} = -\frac{341}{31}.

Substitute λ=34131\lambda = -\frac{341}{31} into the original equations to find μ\mu:

μ=145731.\mu = \frac{1457}{31}.

Step 5: Calculate μ+2λ\mu + 2\lambda

μ+2λ=145731+2(34131).\mu + 2\lambda = \frac{1457}{31} + 2\left(-\frac{341}{31}\right). μ+2λ=145768231=77531=25.\mu + 2\lambda = \frac{1457 - 682}{31} = \frac{775}{31} = 25.

Final Answer: Option (1).