Solveeit Logo

Question

Question: Let $\lambda$ is the coefficient of $x^2$ in the expansion $(1+x)(1-3x)(1+5x)(1-7x)...(1-23x)(1+25x)...

Let λ\lambda is the coefficient of x2x^2 in the expansion (1+x)(13x)(1+5x)(17x)...(123x)(1+25x)(1+x)(1-3x)(1+5x)(1-7x)...(1-23x)(1+25x) then number of positive divisors of λ|\lambda| is

A

4

B

6

C

8

D

10

Answer

8

Explanation

Solution

The given expression is the product of 13 terms: P(x)=(1+x)(13x)(1+5x)(17x)...(123x)(1+25x)P(x) = (1+x)(1-3x)(1+5x)(1-7x)...(1-23x)(1+25x)

This can be written as P(x)=k=113(1+akx)P(x) = \prod_{k=1}^{13} (1+a_k x), where ak=(1)k+1(2k1)a_k = (-1)^{k+1}(2k-1). The coefficients aka_k are 1,3,5,7,9,11,13,15,17,19,21,23,251, -3, 5, -7, 9, -11, 13, -15, 17, -19, 21, -23, 25.

We want to find the coefficient of x2x^2 in the expansion of P(x)P(x). The expansion of a product of terms (1+akx)(1+a_k x) is given by: k=1n(1+akx)=1+(k=1nak)x+(1i<jnaiaj)x2+O(x3)\prod_{k=1}^n (1+a_k x) = 1 + (\sum_{k=1}^n a_k) x + (\sum_{1 \le i < j \le n} a_i a_j) x^2 + O(x^3). In this case, n=13n=13. The coefficient of x2x^2 is λ=1i<j13aiaj\lambda = \sum_{1 \le i < j \le 13} a_i a_j.

We know the identity (k=113ak)2=k=113ak2+21i<j13aiaj(\sum_{k=1}^{13} a_k)^2 = \sum_{k=1}^{13} a_k^2 + 2 \sum_{1 \le i < j \le 13} a_i a_j. So, λ=12[(k=113ak)2k=113ak2]\lambda = \frac{1}{2} \left[ \left( \sum_{k=1}^{13} a_k \right)^2 - \sum_{k=1}^{13} a_k^2 \right].

Let S=k=113akS = \sum_{k=1}^{13} a_k. S=1+(3)+5+(7)+...+(23)+25S = 1 + (-3) + 5 + (-7) + ... + (-23) + 25 S=(13)+(57)+(911)+(1315)+(1719)+(2123)+25S = (1-3) + (5-7) + (9-11) + (13-15) + (17-19) + (21-23) + 25 S=(2)+(2)+(2)+(2)+(2)+(2)+25S = (-2) + (-2) + (-2) + (-2) + (-2) + (-2) + 25 S=6×(2)+25=12+25=13S = 6 \times (-2) + 25 = -12 + 25 = 13.

Let S2=k=113ak2S_2 = \sum_{k=1}^{13} a_k^2. ak2=((1)k+1(2k1))2=(2k1)2a_k^2 = ((-1)^{k+1}(2k-1))^2 = (2k-1)^2. S2=k=113(2k1)2=12+32+52+...+252S_2 = \sum_{k=1}^{13} (2k-1)^2 = 1^2 + 3^2 + 5^2 + ... + 25^2. This is the sum of the squares of the first 13 odd numbers. The formula for the sum of squares of the first nn odd numbers is n(2n1)(2n+1)3\frac{n(2n-1)(2n+1)}{3}. For n=13n=13: S2=13(2×131)(2×13+1)3=13(25)(27)3=13×25×9=13×225=2925S_2 = \frac{13(2 \times 13 - 1)(2 \times 13 + 1)}{3} = \frac{13(25)(27)}{3} = 13 \times 25 \times 9 = 13 \times 225 = 2925.

Now we can calculate λ\lambda: λ=12(S2S2)=12(1322925)=12(1692925)=12(2756)=1378\lambda = \frac{1}{2} (S^2 - S_2) = \frac{1}{2} (13^2 - 2925) = \frac{1}{2} (169 - 2925) = \frac{1}{2} (-2756) = -1378.

We need to find the number of positive divisors of λ|\lambda|. λ=1378=1378|\lambda| = |-1378| = 1378. To find the number of positive divisors of 1378, we find its prime factorization. 1378=2×6891378 = 2 \times 689. To factor 689, we test for divisibility by prime numbers. 68926.2\sqrt{689} \approx 26.2. We check primes up to 23: 2, 3, 5, 7, 11, 13, 17, 19, 23. 689 is not divisible by 2, 3, 5, 7, 11. 689÷13=53689 \div 13 = 53. So, 1378=2×13×531378 = 2 \times 13 \times 53. The prime factors are 2, 13, and 53, each with an exponent of 1. The number of positive divisors is given by the product of (exponent + 1) for each prime factor. Number of divisors = (1+1)×(1+1)×(1+1)=2×2×2=8(1+1) \times (1+1) \times (1+1) = 2 \times 2 \times 2 = 8.

The number of positive divisors of λ|\lambda| is 8.