Solveeit Logo

Question

Mathematics Question on Vectors

Let l1 and l2 be the lines r1 = λ(i^+j^+k^\hat{i}+\hat{j}+\hat{k}) and r2 = (j^k^\hat{j}-\hat{k}) + μ (i^+k^\hat{i}+\hat{k}), respectively. Let X be the set of all the planes H containing line l1. For a plane H, let d (H) denote the smallest possible distance between the points of l2 and H. Let H0 be a plane in X for which d (H0) is the maximum value of d (H ) as H varies over all planes in X . Match each entry in List-I to the correct entries in List-II.

List-IList-II
(P)The value of d (H0) is
(Q)The distance of the point (0,1,2) from H0 is
(R)The distance of origin from H0 is
(S)The distance of origin from the point of intersection of planes y = z, x = 1, and H0 is
(5)

The correct option is:

A

(P)\rightarrow(2) (Q)\rightarrow(4) (R)\rightarrow(5) (S)\rightarrow(1)

B

(P)\rightarrow(5) (Q)\rightarrow(4) (R)\rightarrow(3) (S)\rightarrow(1)

C

(P)\rightarrow (2) (Q)\rightarrow(1) (R)\rightarrow(3) (S)\rightarrow(2)

D

(P)\rightarrow(5) (Q)\rightarrow(1) (R)\rightarrow(4) (S)\rightarrow(2)

Answer

(P)\rightarrow(5) (Q)\rightarrow(4) (R)\rightarrow(3) (S)\rightarrow(1)

Explanation

Solution

The correct option is (B)
The normal vector of plane parallel l1 and l2 is
ijk 111 101=j^(1)j^(11)+k^(1)\begin{vmatrix} i &j &k \\\ 1&1 &1 \\\ 1&0 &1 \end{vmatrix}=\hat{j}(1)-\hat{j}(1-1)+\hat{k}(-1)
=i^j^=\hat{i}-\hat{j}
H0:xz=c0,0,0\therefore H_0:x-z=c|_{0,0,0}
\Rightarrow C = 0
H0:xz=0H_0: x-z = 0
(P) d(H0)=1 distance of point (0,1,-1) from H.
d=0(1)2=12P5d=|\frac{0-(-1)}{\sqrt2}|=\frac{1}{\sqrt2}\therefore P\rightarrow 5
(Q) d=022=2Q4d=|\frac{0-2}{\sqrt2}|=\sqrt2\therefore Q\rightarrow 4
(R) d=02=0S3d=|\frac{0}{\sqrt2}|=0\therefore S\rightarrow 3
(S)The point of intersection will be (1,1,1)
S1\therefore S\rightarrow 1
d=1+1+1=3\sqrt{1+1+1}=\sqrt3