Solveeit Logo

Question

Mathematics Question on Integrals of Some Particular Functions

Let ln=tannxdx,(n>1).l4+l6=atan5x+bx5+Cl_n = \int \tan^{n} x \, dx , (n > 1) . l_4 + l_6 = a \, \, \tan^5 \, x + bx^5 + C, where CC is a constant of integration, then the ordered pair (a,b)(a, b) is equal to :

A

(15,0)\left(\frac{1}{5} , 0\right)

B

(15,1)\left(\frac{1}{5} , - 1 \right)

C

(15,0)\left( - \frac{1}{5} , 0\right)

D

(15,1)\left( - \frac{1}{5} , 1 \right)

Answer

(15,0)\left(\frac{1}{5} , 0\right)

Explanation

Solution

ln=tannxdx,n>1l_{n}=\int \tan ^{n} x d x, n>1
l4+l6=(tan4x+tan6x)dxl_{4}+l_{6}=\int\left(\tan ^{4} x+\tan ^{6} x\right) d x
=tan4xsec2xdx=\int \tan ^{4} x \sec ^{2} x d x
Let tanx=t\tan x=t
sec2xdx=dt\sec ^{2} x d x=d t
=t4dt=\int t^{4} d t
=t55+C=\frac{t^{5}}{5}+C
=15tan5x+C=\frac{1}{5} \tan ^{5} x +C
a=15,b=0a=\frac{1}{5},\, b=0