Question
Mathematics Question on Integrals of Some Particular Functions
Let ln=∫tannxdx,(n>1).l4+l6=atan5x+bx5+C, where C is a constant of integration, then the ordered pair (a,b) is equal to :
A
(51,0)
B
(51,−1)
C
(−51,0)
D
(−51,1)
Answer
(51,0)
Explanation
Solution
ln=∫tannxdx,n>1
l4+l6=∫(tan4x+tan6x)dx
=∫tan4xsec2xdx
Let tanx=t
sec2xdx=dt
=∫t4dt
=5t5+C
=51tan5x+C
a=51,b=0