Solveeit Logo

Question

Mathematics Question on Limits

Let ln=2n+(2)n2nl_{n } = \frac{2^{n } + \left(-2\right)^{n} }{2^{n}} and Ln=2n+(2)n3nL_{n} = \frac{2^{n} + \left(- 2\right)^{n}}{3^{n}} then as n n \to\infty

A

Both the sequences have limits

B

limnln\displaystyle\lim_{n \to \infty} \, \, l_{n} exists but limnLn\displaystyle\lim_{n \to \infty} \, L_{n} does not exist

C

limnln\displaystyle\lim_{n \to \infty} \, \, l_{n} does not exist but limnLn\displaystyle\lim_{n \to \infty} \, L_{n} exists

D

Both the sequences do not have limits.

Answer

limnln\displaystyle\lim_{n \to \infty} \, \, l_{n} does not exist but limnLn\displaystyle\lim_{n \to \infty} \, L_{n} exists

Explanation

Solution

Given, ln =2n+(2)n2n=1+(2)n2n...(i)=\frac{2^{n}+(-2)^{n}}{2^{n}}=1+\frac{(-2)^{n}}{2^{n}}\,\\...(i)
And Ln=2n+(2)2n3n...(ii) L_{n}=\frac{2^{n}+(-2)^{2 n}}{3^{n}}\,...(ii)
Now, from E (i), we get
limn\displaystyle\lim _{n \rightarrow \infty} ln ={0, when n is odd  2, when n is even =\begin{cases}0, & \text { when } n \text { is odd } \\\ 2, & \text { when } n \text { is even }\end{cases}
limn\therefore\, \displaystyle\lim _{n \rightarrow \infty} does not exist
and limnLn=0\displaystyle\lim _{n \rightarrow \infty} L_{n}=0
limxLn\therefore \, \displaystyle\lim _{x \rightarrow \infty} L_{n} exist.